

Sakura Air Conditioner User-friendly, Earth-friendly

Two Stage Steam Absorption Chiller

FEATURES

STANDARD FEATURES

WIDE PERFORMANCE RANGE

Sakura steam chiller achieves an extremely high performance range from a low of 3 to a high of 9kg/cm²G of steam pressure.

RELIABLE AND SIMPLE OPERATION

Sakura steam chiller gives are liable and trouble-free operation due to its precise-design and construction and does not require highly skilled, specially trained personnel for operation.

EFFECTIVE STRUCTURE - DESIGN

It gives significant headspace savings due to the First Generator being placed beside the main shell by compact parallel flow design.

SUBSTANTIAL ENERGY SAVINGS

Sakura highly efficient steam chiller requires a remarkably low steam input of 4.5kg per ton-hour equates to a COP of 1.17

HIGH EFFICIENT SPRAY HEAD DESIGN

Stainless steel spray heads of Evaporator and Absorber provide extremely uniform, soft, low pressure mist. This extends the Evaporator and Absorber tube life by substantially reducing erosion and also improves cycle operating efficiency.

LOW MAINTENANCE COST

High quality pumps which motor pump assemblies are hermetically sealed, self-lubricating and precision fabricated from the highest quality materials provide low maintenance cost significantly reduced.

"U"- TUBE DESIGN FOR HIGH RELIABILITY AND EFFICIENCY

The machine's reliability and efficiency are significantly enhanced by the use of "U"-shaped 90/10 cupro-nickel tubes in the First stage Generator. This advanced feature reduces thermal stess, prolongs tube life and increases machine efficiency.

HIGHLY EFFECTIVE INHIBITORS

The patented inhibitors used in the unit's lithium bromide solution are non-toxic lithium nitrates. These inhibitors were specially formulated for use in the Sakura steam chiller to reduce corrosion and extend tube life in the First Stage Generator. In addition, they are safe and environmentally acceptable.

OPTIONAL FEATURES

VARIABLE OUTLET CONDITIONS

Temperatures and flow rates for chilled water and condenser water can be varied from those listed in the specifications.

MODIFIED TUBE CONSTRUCTION

A variety of tube thicknesses and materials is available to meet special requirements, such as those for industrial processes.

PUMP ISOLATION VALVES SIMPLIFY MAINTENANCE

The exclusive suction and discharge isolation valves on Solution and Refrigerant Pumps make routine inspection and maintenance quick and simple, preventing vacuum loss, loss of solution and chance of contamination. The isolation valves also substantially reduce the time and effort required for pump service.

LEAD-LAG OPERATION

Controls for lead-lag operation are available for applications where two or more machines are installed in a building.

HIGH PRESSURE WATER CIRCUITS

For high-rise buildings where higher pressures are required, water circuits and headers can be supplied for 200 psig working pressure.

PUMP MOTOR POWER FACTOR CORRECTION

With this option, the power factor is increased by adding phase condensers to the power circuit. This is beneficial for applications where reactive power must be kept to a minimum.

EARTHQUAKE SWITCH

This optional switch will automatically stop the machine in the event of a tremor.

HOW IT WORKS

Sakura Two Stage Absorption Chiller complete with Evaporator, Absorber, First-stage Generator Second-stage Generator, Condenser, Heat Exchanger.

Its remarkably efficient refrigerant cycle uses water as the refrigerant an lithium bromide as the absorbent in Parallel flow. The entire process occurs in hermetic vessels in an almost complete vacuum. Its cooling cycle is continuous but for the sake of clarity and simplicity, it is divided into seven steps.

① EVAPORATOR

Refrigerant liquid from the condenser passes through an Expansion Valve and flows down to the Evaporator. Where it is pumped up to the top of the Evaporator by the Refrigerant pump. Here the liquid is sprayed out as a fine mist over the Evaporator tubes. Due to the extreme vacuum(6mm Hg) in the Evaporator, some of the refrigerant liquid vaporizes, creating the refrigerant effect. (This vacuum is created by hygroscopic action-the strong affinity lithium bromide has for water-in the Absorber directly below.)

② ABSORBER

As refrigerant liquid/vapour descends to the Absorber from the Evaporator concentrated solution (63%) coming from the Heat Exchanger is sprayed out into the flow of descending refrigerant. The hygroscopic action between lithium bromide and water-and the related changes in concentration and temperature-result in the creation of an extreme vacuum in the Evaporator directly above. The dissolving of the lithium bromide in water gives off heat which is removed by condenser water entering from the Cooling Tower at 32°C and leaving for the Condenser at 35.94°C The resultant dilute lithium bromide solution collects in the bottom of the Absorber, where it flows down to the Solution Pump.

3 SOLUTION PUMP/HEAT EXCHANGERS

A dilute solution(57.5%) of lithium bromide and water descends from the Absorber to the Solution Pump. This flow of dilute solution is split into two streams and pumped through heat exchangers to the First Stage Generator and to the Second Stage Generator.

4) FIRST STAGE GENERATOR

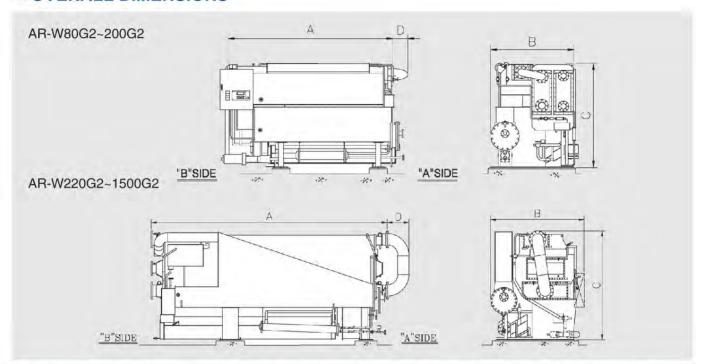
An energy source heats dilute lithium bromide solution (57.5%) coming from the solution Pump/Heat Exchangers. This produces hot refrgerant vapour which is sent to the Second Stage Generator leaving a concentrated solution (64%) that is returned to the Heat Exchangers.

⑤ DRAIN COOLER

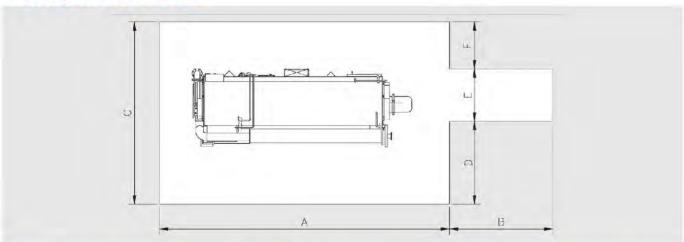
The high-pressure steam condensed in the 1st stage generator is cooled below 90°C here using the solution supplied to the 1st stage generator or 2nd stage generator, and also the heat efficiency is enhanced by heating the supplied solution

6 SECOND STAGE GENERATOR

The energy source for the production of refrigerant vapour in the Second Stage Generator is the hot refrigerant vapour produced by the First Stage Generator This additional refrigerant vapour is produced when dilute solution from the Heat exchanger is heated by refrigerant Vapour from the First Stage Generator. The additional concentrated solution that results is returned to the Heat Exchanger. The refrigerant vapor from the First Stage Generator condenses into liquid giving up its heat and continues to the Condenser.


① CONDENSER

Refrigerant from two sources - (1) liquid resulting from the condensing of vapor produced in the First stage Generator. and (2) vapor produced by the Second Stage Generator-enters the Condenser. The refrigerant vapor is condensed into liquid and the refrigerant liquid is cooled. The refrigerant liquids are combined and cooled by cooling water. The liquid then flows down to the Evaporator.


DIMENSIONS

■ OVERALL DIMENSIONS

MODEL(AR-W)	80~100G2	115~125G2	140~170G2	200G2	220~270G2	320G2	360~400G2	450~500G2	550~600G2	700G2	800G2	900~1000G2	1250~1500G2
A	2,455		3,411		3,750	4,080	4,600	5,600	6,600	6,600	6,600	7,800	8,800
В	1,760		1,900			2,193		2,222	2,253	2,571	2,571	3,207	3,192
С	2,046		2,065		2,5	34	2,514	2,580	2,655	2,866	2,889	3,300	3,335
D	0	271	271	309	250	330	322	525	636	475	544	721	710

■ SPACE FOR SERVICE

MODEL (AR-W)	80~100G2	115~150G2	170, 200G2	220~320G2	360, 400G2	450, 500G2	550, 600G2	700G2	800G2	900, 1000G2	1250~1500G2
Α	4,450	5,700	5,700	6,250	6,900	8,200	9,400	9,100	9,200	12,600	13,600
В	1,000	2,000	2,000	2,200	3,100	4,100	5,100	5,100	5,100	5,100	6,100
С	3,700	3,900	3,900	4,400	4,300	4,300	4,400	4,700	4,700	5,200	5,200
D	1,200	1,300	1,300	1,400	1,400	1,400	1,400	800	800	1,000	1,000
E	1,600	1,700	1,700	1,900	1,900	1,900	2,000	2,600	2,600	3,300	3,300
F	900	900	900	900	900	900	1,000	1,000	1,000	1,000	1,000

SPECIFICATIONS

W-TYPE(STEAM PRESS. 8kg/cm²G) 80 RT~1,500RT

ITE	M		UNIT	MODEL	AR- W80G2	AR- W90G2	AR- W100G2	AR- W115G2	AR- W125G2	AR- W140G2	AR- W150G2	AR- W170G2	AR- W200G2	AR- W220G2	AR- W250G2	AR- W270G2
Olivies.		CAPACITY	/	USRT	80	90	100	115	125	140	150	170	200	220	250	270
-		TEMPER		C			100	110			OUTLET:		200	LLO	200	2,0
	LLED	FLOW R	275.73.50	m³/ h	48.4	54.4	60.5	69.6	75.6	84.7	90.8	102.8	121	133.1	151.2	163.3
	TER	TATA STREET	RE DROP	mAq	4.4	4.0	5.7	4.4	5.2	5.4	6.1	7.9	10.9	5.5	7.1	3.6
310	o i Civi	Diginal Co.	CTION SIZE	A	80	100	100	100	100	100	100	100	125	125	125	125
		TEMPER	23,003,636,60	C		100	100	100	28.5	100	OUTLET : 3	7.5.5	120	120	120	120
	DLING	FLOW R		m³/h	83.2	93.6	104.0	119.6	130.0	145.6	156.0	176.8	208.0	228.8	260.0	280.8
	TER		RE DROP	mAq	8.1	7.2	9.0	6.8	8.0	5.7	6.7	4.0	5.5	9.0	11.8	8.0
010	LIVI	1000000	CTION SIZE	A	100	125	125	125	125	125	125	125	150	150	150	150
S	STEAM	A PRESSU	JRE	kg/cm²G		199	,,,,,				8			191		
T	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	UMPTION	(100)	kg/h	360	405	450	518	563	630	675	765	900	990	1,125	1.215
E	2.500.00		CTION SIZE	A		100	40	9,0				0	333	900	65	1,12.0
M	C. C.	W. D. Daco	CTION SIZE	A					15			7			20	
-	-	OWER SO	- 10 6 4 5 C C C	V						3 ¢ . 380V	/, 50/60Hz					
E	R C	APACITY	*****	KVA		6.5				1	0				11	
E	1	DLUTION	PUMP	KW		1.1+0.4				3	.7				4.5	
			ANT PUMP	KW		2110000			0.4		72				0.8	
	L	ACUUM PI		KW				_	0.4		-	-			917	
П	CAPA	CITY CON	NTROL	-				FL		MATIC, PR	OPORTION	IAL CONTR	IOL			
	OPEF	ATING W	EIGHT	Ton	4.7	4.7	4.7	7.5	7.5	8.2	8.2	9.0	9.0	11.0	11.2	11.5
П	RIGG	ING WEIG	нт	Ton	4.5	4.5	4.5	7.1	7.1	7.8	7.8	8.6	8.6	10.2	10.4	10.7
		LE	NGTH (L)	mm	2,455	2,455	2,455	3,705	3,705	3,682	3,682	3,682	3,720	4,000	4,000	4,000
	XTERN.	101	IDTH (W)	mm	1,760	1,760	1,760	1,900	1,900	1,900	1,900	1,900	1,900	2,193	2,193	2,193
D	IVIENSI		EIGHT (H)	mm	2,046	2,046	2,046	2,065	2,065	2,065	2,065	2,065	2,065	2,534	2,534	2,534
		MACHINE	V					-	1	MUNSELL 4	.5BG 4.5/3.	0				

(NOTE)

- (1) 1 USRT: 3.024kcal / h.
- (2) MAXIMUM PERMISSIBLE PRESSURE OF WATER CIRCUITS: 8kg/cm²G
- (3) FOULING FACTORS OF CHILLED WATER, COOLING WATER: 0.0001m²h°C / kcal
- (4) 3 Phase, 380V, 60Hz IS STANDARD, OTHER VOLTAGES ARE AVAILABLE ON REQUEST.

HOW TO SELECT THE RIGHT MACHINE FOR YOUR APPLICATION

To determine the appropriate model for your specific application, follow the examples, which explain how to use the Steam Chiller Selection Graph and the Specifications Table.

EXAMPLE A

Your steam inlet pressure is 7kg/cm²G and your facility requires 550 tons of air conditioning. Which model should you select, and what will be the steam consumption?

- Enter the horizontal axis of the Selection Graph at the 7kg/cm²G pressure line and follow the line up until it intersects the curve.
- 2. From this point move to the left vertical axis and read the percentage of Cooling capacity available for that steam inlet pressure (in this case, 96%). This means that the steam chiller produces 96% of its rated (8kg/cm²G) Cooling capacity with 7kg/cm²G of steam pressure. Then, divide 550 RT by 0.96 to determine the model required to produce 550 RT of Cooling-in this case 573 RT capacity.
- Referring to the COOLING CAQPACITY line in the Specifications Table, find the machine size which can produce the Cooling required. In this example it is Model AR-W600G2 (rated 600 RT @ 8kg/cm²G), which produces up to 576 RT at 7kg/cm²G

 Steam consumption will be 550 RT × 4.5kg per RT-hour = 2,475kg/hours @ 7kg/cm²G

EXAMPLE B

Your facility produces 4,450kg of steam per hour at 5.5kg/cm²G pressure. How many tons of Cooling can you obtain from the machine, and which model should you select?

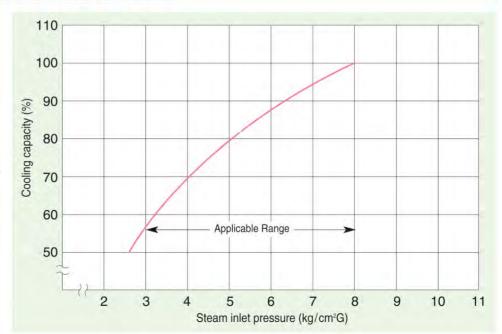
- Since the machine requires 4.5kg per RT-hour, divide the 4,450kg of steam per hour by 4.5. The resulting figure, 988 represents approximate Cooling tonnage available.
- Having determined available capacity, the next step is to identify the model required. The Selection Graph shows that a machine operating at 5.5kg/cm²G delivers approximately 85% of rated (8kg/cm²G) capacity. Dividing 988 by 0.85 gives a chiller capacity of 1,160 RT.
- 3. Read across the COOLING CAPACITY line in the Specifications Table to find the standard size machine closest to the 1,160 RT requirement. The model that meets this criterion is Model AR-W1250G2, which is rated 1,250 tons @ 8kg/cm²G but will produce up to 1,062 (1,250 × 0.85) RT at 5.5kg/cm²G. However since output is limited by the available steam, only 988 RT of Cooling will be produced.

ITE		UNIT	MODEL	AR- W320G2	AR- W360G2	AR- W400G2	AR- W450G2	AR- W500G2	AR- W550G2	AR- W600G2	AR- W700G2	AR- W800G2	AR-	AR- W1000G2	AR- W1250G2	AR-
(ALE				1.0.10.00	100000000	100000000000000000000000000000000000000	24.5555	The same of the same of		Total Addition	100000000000000000000000000000000000000	Marie San	1000.000.000.00			1000000
CO	OLING	CAPACITY	USRT	320	360	400	450	500	550	600	700	800	900	1000	1250	1500
01.11		TEMPERATURE	°C						INLET: 12	.0°C, OUT	LET : 7.0°C					
	LLED TER	FLOW RATE	m³/ h	193.5	217.7	241.9	272.2	302.4	332.7	362.9	423.4	483.8	544.3	604.8	756.0	907.2
	STEM	PRESSURE DROP	mAq	5.0	7.6	9.4	4.3	5.3	7.5	8.9	7.4	7.6	7.9	8.3	11.9	17.2
		CONNECTION SIZE	Α	150	150	150	200	200	200	200	250	250	250	300	300	350
	2020	TEMPERATURE	°C						NLET: 32.	.0°C, OUTI	ET: 37.4°	С				
	DLING TER	FLOW RATE	m³/ h	332,8	374.4	416.0	468.0	520.0	572.0	624	728	832	936	1,040	1,300	1,560
	TEM	PRESSURE DROP	mAq	10.2	12.3	15.2	8.4	10.4	11.5	13.7	8.0	8.5	13	5.3	13.1	14.8
		CONNECTION SIZE A EAM PRESSURE kg/cm/G	Α	200	200	200	250	250	300	300	300	350	350	350	400	400
s	STEAM		kg/cm²G							8						
T	CONSUMPTION RATE kg/h 1,440 1,620 1,800	1,800	2,025	2,250	2,475	2,700	3,150	3,600	4,050	4,500	5,625	6,750				
E	STEAM	M CONNECTION SIZE	Α	65	8	0		100			125			1	50	
M	DRAIN	CONNECTION SIZE	Α		05 80						25		3	32	4	0
E	PO	OWER SOURCE	٧						3∮,	380V, 50/	60Hz					
L	R C	APACITY	KVA		11			1.1	9		23			35	40	45
	C SC	OLUTION PUMP	KW		4.5			5	.5		7.5	11.4	1-	4.9	16	5.7
		EFRIGERANT PUMP	KW		0.8						1	.5				
	L V	ACUUM PUMP	KW							0.4						
	VACUUM PUMP KW CAPACITY CONTROL -	-					FULLY A	JTOMATIC	, PROPOI	RTIONAL (CONTROL					
OPERATING WEIGHT Ton RIGGING WEIGHT Ton	11.8	12.5	12.9	14.5	15.0	18.0	18.5	23.5	30.0	34.0	37.0	45.0	50.0			
	Ton	11.0	11.6	12.0	13.5	14.0	16.5	17.0	22.0	28.0	32.5	34.5	42.0	45.0		
	LENGTH (L) m	mm	4,080	4,922	4,922	6,125	6,125	7,236	7,236	7,075	7,144	8,521	8,521	9,510	9,510	
-	XTERN.	MIDTH (M)	mm	2,193	2,193	2,193	2,222	2,222	2,253	2,253	2,571	2,571	3,207	3,207	3,192	3,192
DI	INENSI	HEIGHT (H)	mm	2,534	2,514	2,514	2,580	2,580	2.655	2,655	2.866	2,889	3,300	3,300	3,335	3,335
		MACHINE COLOR		-1	212.12	210.11	-1003		2012.70	ELL 4.5BG				1 -1	1 0,000	5,550

STEAM CHILLER SELECTION GRAPH

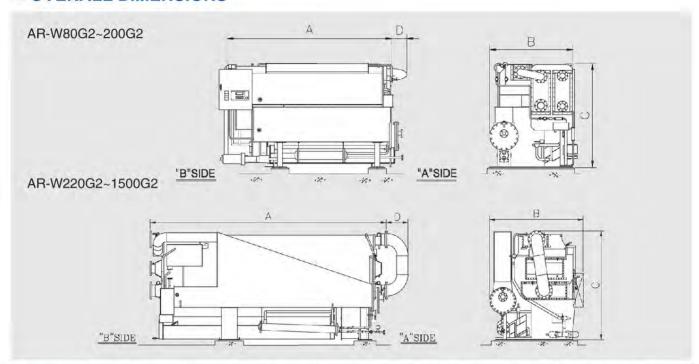
Chilled Water

Temperatures;

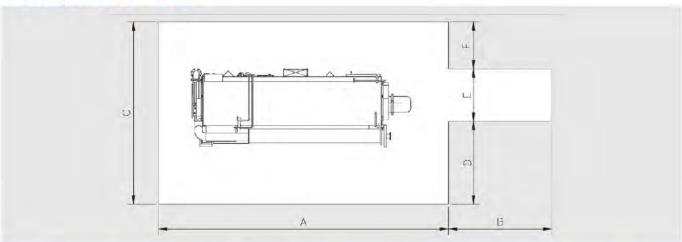

Entering 12°C Leaving 7°C

Cooling Water Temperatures;

Entering 32°C Leaving 37.4°C


Steam Consumption (Constant);

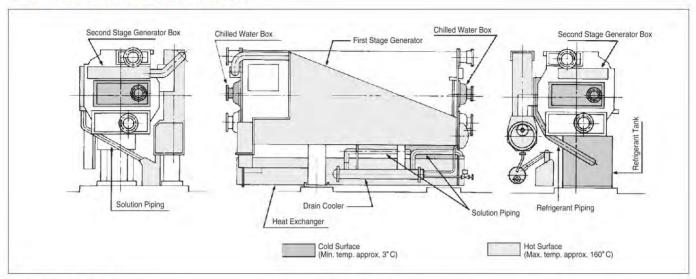
4.5kg per RT-hour


DIMENSIONS

OVERALL DIMENSIONS

MODEL(AR-W)	80~100G2	115~125G2	140~170G2	200G2	220~270G2	320G2	360~400G2	450~500G2	550~600G2	700G2	800G2	900~1000G2	1250~1500G2
A	2,455		3,411		3,750	4,080	4,600	5,600	6,600	6,600	6,600	7,800	8,800
В	1,760		1,900			2,193		2,222	2,253	2,571	2,571	3,207	3,192
С	2,046		2,065		2,5	34	2,514	2,580	2,655	2,866	2,889	3,300	3,335
D	0	271	271	309	250	330	322	525	636	475	544	721	710

■ SPACE FOR SERVICE



MODEL (AR-W)	80~100G2	115~150G2	170, 200G2	220~320G2	360, 400G2	450, 500G2	550, 600G2	700G2	800G2	900, 1000G2	1250~1500G2
Α	4,450	5,700	5,700	6,250	6,900	8,200	9,400	9,100	9,200	12,600	13,600
В	1,000	2,000	2,000	2,200	3,100	4,100	5,100	5,100	5,100	5,100	6,100
С	3,700	3,900	3,900	4,400	4,300	4,300	4,400	4,700	4,700	5,200	5,200
D	1,200	1,300	1,300	1,400	1,400	1,400	1,400	800	800	1,000	1,000
E	1,600	1,700	1,700	1,900	1,900	1,900	2,000	2,600	2,600	3,300	3,300
F	900	900	900	900	900	900	1,000	1,000	1,000	1,000	1,000

INSULATION WORK

■ INSULATION PROCEDURE

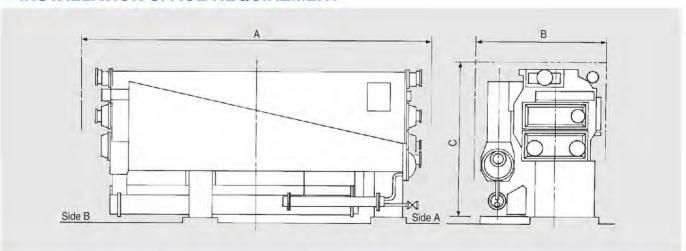
1. Insulation Material

Hot surface: Fiberglass or equivalent Cold surface: Fiberglass polyethylene foam or equivalent

2. Insulation Thickness

Hot surface: Approx 50mm for first stage generator and approx. 25mm for others Cold surface: Approx. 25mm

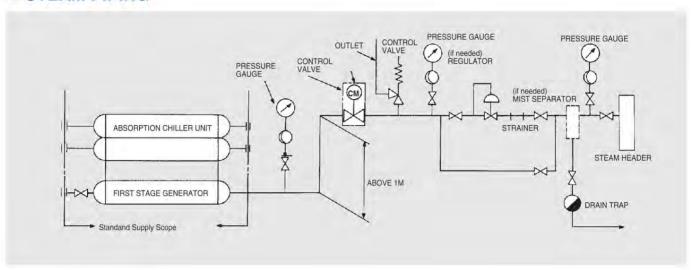
3. Remarks

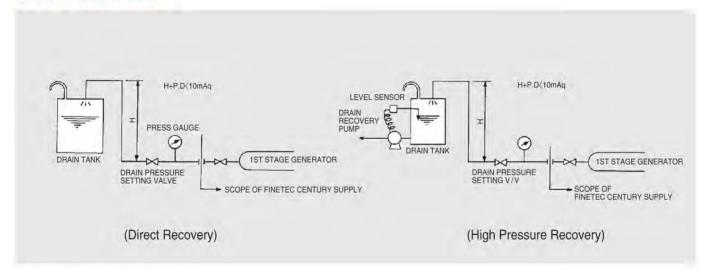

(1) Do not embed the moving parts(valve handles) in insulation, valve handles must be free from insulation.

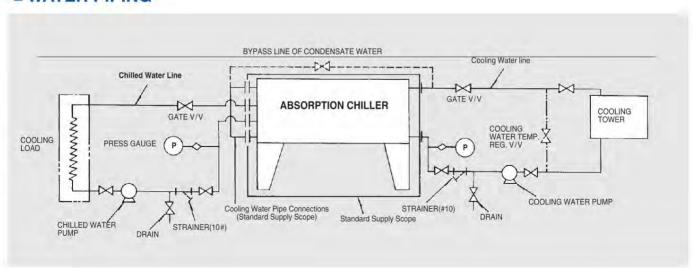
- (2) Do not embed the sight glass in insulation
- (3) Do not embed the thermometer and thermowell in insulation.
- (4) Do not embed the refrigerant pump motor in insulation.
- (5) When the water box is opened to clean the tubes, do not embed the clamping bolts of the water box.
- (6) Use fiber glass or polyethylene foam for cold insulation.

 Use fiber glass for hot insulation. (Do not use polyethylene foam for hot insulation.)
- (7) Use a bonding agent, iron wires or bands to mount the insulation material. Do not use tapping(welding) and riveting.
- (8) Insulation work will be done by others.

Model AR-W	80~100G2	115~200G2	220~320G2	360, 400G2	450, 500G2	550, 600G2	700G2	800G2	900, 1000G2	1250~1500G2
Hot surface(m²)	12	20	25	27	27	31	35	37	50	63
Cold surface(m²)	7.5	7.5	8	8	8	12	12	12	27	30

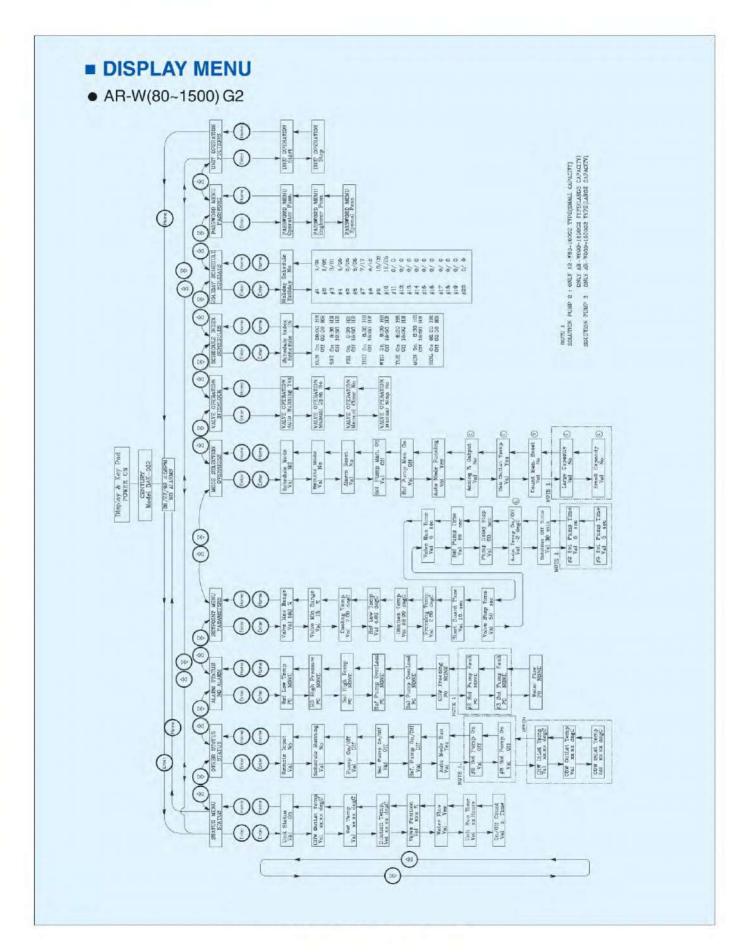

■ INSTALLATION SPACE REQUIREMENT


Model	AR-W	80~ 100G2	115G2	125G2	140G2	150G2	170G2	200G2	220G2	250G2	270G2	320G2	360G2	400G2	450G2	500G2	550G2	600G2	700G2	800G2	900G2	1000 G2	1250 G2	1500 G2
Α	mm	3,455			4,6	95				5,2	250		5,9	00	7,1	100	8,2	240	7,060	8,140	9,5	00	9,5	500
В	mm	2,380			2,4	180				2,9	930		2,8	00	2,8	320	2,8	380	2,580	2,580	3,8	00	3,8	300
С	mm	2,315			2,3	355				2,8	360		2,8	60	2,8	380	2,9	960	3,190	3,190	3,6	50	3,5	500
weight	ton	4.5	7.1	7.1	7.8	7.8	8.6	8.6	10.2	10.4	10.7	11.0	11.6	12.0	13.5	14.0	16.5	17.0	22.0	28.0	32.5	34.5	42.0	45.0

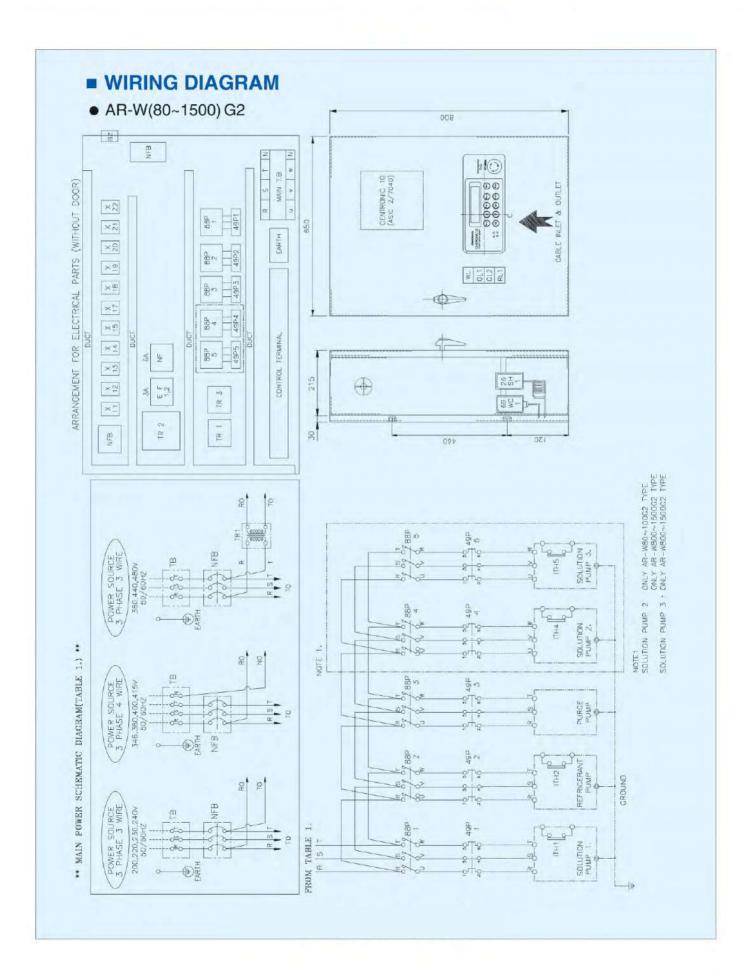

STEAM PIPING

STEAM PIPING

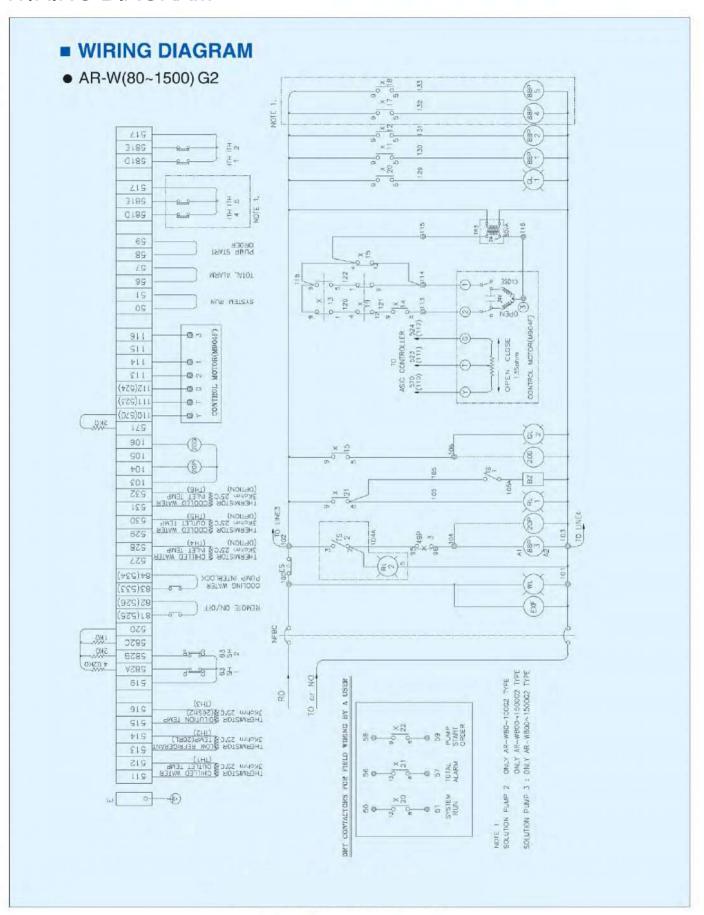
■ WATER PIPING

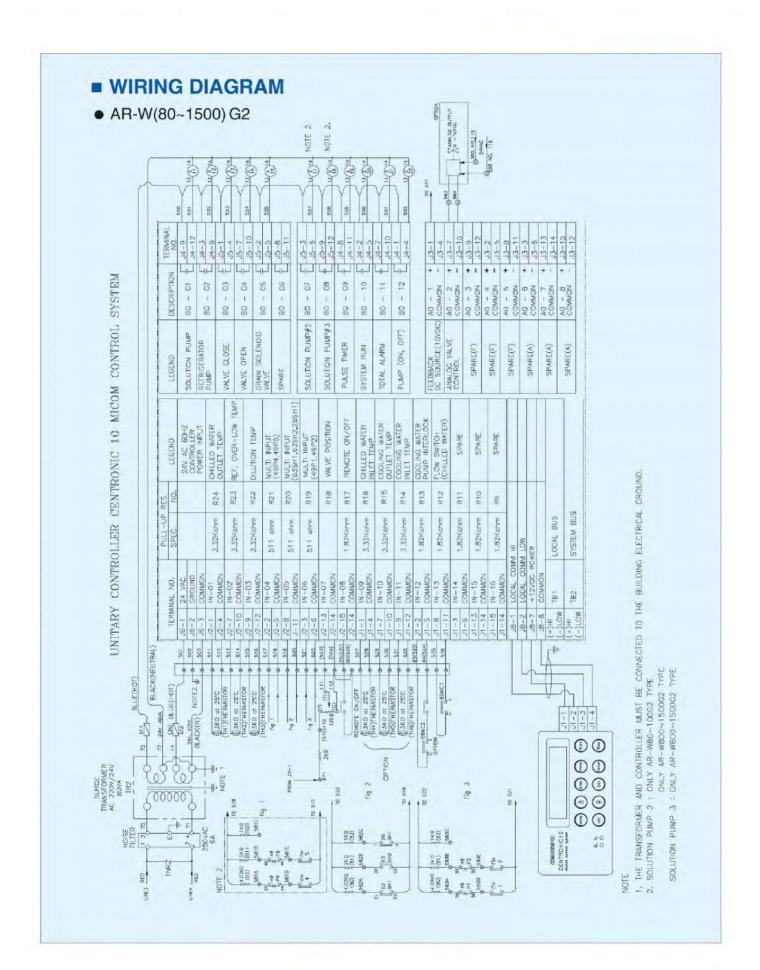

Please provide following data for selections or quotations.

STEAM ABSORPTION CHILLER


MODEL:

USRT	Quantity:	Unit
Entering temp.		°C
Leaving temp.		°C
Flow rate		m³/h
Fouling factor		m²h°C/kcal
Entering temp.		°C
Leaving temp.		°C
Flow rate		m³/h
Fouling factor		m²h°C/kcal
Chilled water		kg/cm ² G
Cooling water		kg/cm ² G
Pressure		kg/cm ² G
Flow rate		kg/h
	Phase, V,	Hz,
	Indoor or Outd	oor
Air condit	ioning or Industrial process etc.	
	Entering temp. Leaving temp. Flow rate Fouling factor Entering temp. Leaving temp. Flow rate Fouling factor Chilled water Cooling water Pressure Flow rate	Entering temp. Leaving temp. Flow rate Fouling factor Entering temp. Leaving temp. Flow rate Fouling factor Chilled water Cooling water Pressure Flow rate





WIRING DIAGRAM

WIRING DIAGRAM

■ WIRING DIAGRAM

• AR-W(80~1500) G2

** LAMP DESCRIPTION

WL	GL1	GL2	RL1	RL2
POWER	SYSTEM RUN	COOL ON	TOTAL ALARM	PURGE PUMP
5	2	F3	L4	12

** INPU	SWITCH FOR H.G PRESS. HIGH	COO HIGH COO HIGH COO OP	63SH2
DAIN DIAN	SWITCH FOR H.G PRESS, HIGH	COO PRESS.	63SH 1
HINAL WIL	THERMOSTAT FOR H.G HIGH TEMP.	TEMP.	26SH 1
I NI LO	OVER-CURRENT RELAY FOR PUMP	AMPERE HIGH	49P 1~5
** CONTROL SWITCH INTERINAL WIRING DIAGRAM **	SWITCH FOR WATER SUSPENSION	PHESS.	69WC 1
*	INTERNAL THERMOSTAT	H1 TEMP.	ITH 1~3

NO.	DEVICE NO.	NAME OF INSTRUMENT	MODEL	MAKER	SPECIFICATION	5
+	TH1	THERMISTOR(COOLING)	ST-W22	PRECON	25°C 3kg WITH WELL	+
2	TH2	THERMISTOR	ST-W22	PRECON	25°C 3kg WITH WELL	+
m	TH3	THERMISTOR	ST-W22	PRECON	25°C 3kg WITH WELL	1
4		CONTROL MOTOR	M 904F	YAMATAKE		+
ro		CONTROL VALVE		YAMATAKE HONEYWELL		-
9		VALVE LINKAGE		YAMATAKE HONEYWELL		-
_	26SH1	HIGH SOLUTION TEMP. CUT OUT SWITCH	INS-C1150M1Q	SAGINOMIYA	ON: MANUAL OH: 165°C	-
80	69WC1	C.W SUSPENSION CUT OUT SWITCH	YPS-C104Q	SAGINOMIYA	0.2kg/ Cm²~2kg/ Cm² RANGE OFF: 0.3kg/ Cm² ON: 0.42kg/ Cm²	+
0	63SH1	HIGH PRE, CUT OUT FOR HIGH TEMP, GEN	VM-150S-S	UEDA	OFF :-40mmHgG ON : -720mmHgG	-
10	63SH2	PUMP STARTING RELAY	VM-150S-S	UEDA	OFF :-740mmHgG ON : -710mmHgG	-
=	X11~X22	AUXILIARY RELAY	MY-2N	OMRON	AC 24V 2SPDT	F
12	L1~L4	PILOT LAMP	YSRL-34-T22	YONGSUNG	AC 220V W:1, R:1, G:2	4
13	TR1	TRANSFORMER	ONLY 440VAC	SAMHO	440, 380V/220V 300VA	+
14	TR2	TRANSFORMER		SAMHO	220V/24V, 24V 80VA	+
15	TR3	TRANSFORMER		SAMHO	220V/24V 50VA	1
16	TS1	ON. OFF SWITCH	WOK-10A	MOOUIN	ON.OFF 1a 1b, 1 POSITION	1
17	BZ	BUZZER	KH-402-2		AC 220V ≠30	+
8	EF1,2	FUSE (WITH FUSE HOLDER)			220V, 3A	2
19	TB	TERMINAL BLOCK			REFER TO SPECIAL SPEC.	8
20	NFB	NO FUSE BREAKER			REFER TO SPECIAL SPEC.	1
21	88P	MAGNETIC CONTACTOR			REFER TO SPECIAL SPEC.	
22	49P	OVER CURRENT RELAY			REFER TO SPECIAL SPEC.	
23	TH4	THERMISTOR	ST-W22	PRECON	25°C 3kg WITH WELL	OPTION
24	THS	THERMISTOR	ST-W22	PRECON	25°C 3kg WITH WELL	OPTION
25	TH6	THERMISTOR	ST-W22	PRECON	25°C 3kg WITH WELL	OPTION
26	TS2 + RL2	SWITCH WITH LAMP	WOK-10A	NICOOM	250V 5A NEON LAMP 220V	+
27	NFBC	NO FUSE BREAKER	NFC-E32	ANAM	2P 460VAC 5A	+
28	EXF	EXHAUST FAN	4715MS-22T-B50	MINEBEA	1¢ 220V 50/60Hz	-
59						
30						

SAKURA CORPORATION