СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

ТЕПЛОВАЯ ИЗОЛЯЦИЯ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ

Дата введения 1990-01-01

РАЗРАБОТАНЫ ВНИПИ Теплопроект Минмонтажспецстроя СССР - (В.В.Попова - руководитель темы, Л.В.Ставрицкая; кандидаты техн. наук В.Г.Петров-Денисов, И.Л.Майзель, В.И.Калинин; А.И.Лисенкова, О.В. Дибровенко, В.Н.Гордеева), ЦНИИПроект Госстроя СССР (И.М.Губакина), ВНИИПО МВД СССР (кандидаты техн. наук М.Н.Колганова, Р.З.Фахрисламов).

ВНЕСЕНЫ Министерством монтажных и специальных строительных работ СССР.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Управлением стандартизации и технических норм в строительстве Госстроя СССР (Г.М.Хорин, В.А.Глухарев).

УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ постановлением Государственного строительного комитета СССР от 9 августа 1988 г. N 155

С введением в действие СНиП 2.04.14-88 утрачивают силу разд. 8 и прил. 12-19 СНиП 2.04.07-86 "Тепловые сети", разд. 13 и прил. 6-8 СНиП II-35-76 "Котельные установки", СН 542-81 "Инструкция по проектированию тепловой изоляции оборудования и трубопроводов промышленных предприятий", разд. 7 СН 527-80 "Инструкция по проектированию технологических стальных трубопроводов на $P_{\rm y}$ до 10 МПа", разд. 6 СН 550-82 "Инструкция по проектированию технологических трубопроводов из пластмассовых труб", п. 1.5 СНиП 2.04.05-86 "Отопление, вентиляция и кондиционирование".

В СНиП 2.04.14-88* внесено Изменение № 1, утвержденное постановлением Госстроя России от 31 декабря 1997 года № 18-80.

Настоящие строительные нормы и правила следует соблюдать при проектировании тепловой изоляции наружной поверхности оборудования, трубопроводов и воздуховодов в зданиях, сооружениях и наружных установках с температурой содержащихся в них веществ от минус 180 до 600°C.

Настоящие нормы не распространяются на проектирование тепловой изоляции оборудования и трубопроводов, содержащих и транспортирующих взрывчатые вещества, изотермических хранилищ сжиженных газов, зданий и помещений для производства и хранения взрывчатых веществ, атомных электростанций и установок.

1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1. Для тепловой изоляции оборудования, трубопроводов и воздуховодов, как правило, следует применять полносборные или комплектные конструкции заводского изготовления, а также трубы с тепловой изоляцией полной заводской готовности.
- 1.2. Для трубопроводов тепловых сетей, включая арматуру, фланцевые соединения и компенсаторы, тепловую изоляцию необходимо предусматривать независимо от температуры теплоносителя и способов прокладки.

Для обратных трубопроводов тепловых сетей при $D_{v} \leq 200$ мм, прокладываемых в помещениях,

тепловой поток от которых используется для отопления помещений, а также конденсатопроводов при сбросе конденсата в канализацию, тепловую изоляцию допускается не предусматривать. При технико-экономическом

обосновании допускается прокладывать конденсатные сети без тепловой изоляции.

- 1.3. Арматуру, фланцевые соединения, люки, компенсаторы следует изолировать, если изолируется оборудование или трубопровод, на котором они установлены.
- 1.4. При проектировании необходимо также соблюдать требования к тепловой изоляции, содержащиеся в других нормативных документах, утвержденных или согласованных с Госстроем России.

2. ТРЕБОВАНИЯ К ТЕПЛОИЗОЛЯЦИОННЫМ КОНСТРУКЦИЯМ, ИЗДЕЛИЯМ И МАТЕРИАЛАМ

2.1. Теплоизоляционные конструкции следует предусматривать из следующих элементов:

теплоизоляционного слоя;

армирующих и крепежных деталей;

пароизоляционного слоя;

покровного слоя.

Защитное покрытие изолируемой поверхности от коррозии не входит в состав теплоизоляционной конструкции.

- 2.2. В теплоизоляционной конструкции пароизоляционный слой следует предусматривать при температуре изолируемой поверхности ниже 12°C. Необходимость устройства пароизоляционного слоя при температуре от 12 до 20°C определяется расчетом.
- 2.3. Для теплоизоляционного слоя оборудования и трубопроводов с положительными температурами содержащихся в них веществ для всех способов прокладок, кроме бесканальной, следует применять материалы и изделия со средней плотностью не более 400 кг/м и теплопроводностью не более 0,07 Вт/ (м ·°С) (при температуре 25°С и влажности, указанной в соответствующих государственных стандартах и технических условиях на материалы и изделия). Допускается применение шнуров асбестовых для изоляции трубопроводов условным проходом до 50 мм включительно.

Для изоляции поверхностей с температурой выше 400° C в качестве первого слоя допускается применение изделий с теплопроводностью более $0.07~\mathrm{BT/(M\cdot{}^{\circ}C)}$.

2.4. Для теплоизоляционного слоя оборудования и трубопроводов с отрицательными температурами следует применять теплоизоляционные материалы и изделия со средней плотностью не более 200 кг/м 3 и расчетной теплопроводностью в конструкции не более 0,07 Bt/ (м \cdot °C).

Примечание. При выборе теплоизоляционной конструкции поверхности с температурой от 19 до 0°C следует относить к поверхностям с отрицательными температурами.

2.5. Число слоев пароизоляционного материала в теплоизоляционных конструкциях для оборудования и трубопроводов с отрицательными температурами содержащихся в них веществ приведено в табл. 1.

Таблица 1

Пароизоляционный материал	Толщина, мм	Число слоев пароизоляционного материала при различных температурах изолируемой поверхности и сроках эксплуатации теплоизоляционной конструкции					
		от минус от минус 61 до ниже минус10 60 до 19°C минус 100°C					нус100°С
		8 лет	12 лет	8 лет	12 лет	8 лет	12 лет

Полиэтиленовая пленка, ГОСТ 10354-82	0,15-0,2 0,21-0,3 0,31-0,5	2 1 1	2 2 1	2 2 1	2 2 1	3 2 2	- 3 2
Фольга алюминиевая, ГОСТ 618-73	0,06-0,1	1	2	2	2	2	2
Изол, ГОСТ 10296-79	2	1	2	2	2	2	2
Рубероид, ГОСТ 10923-82	1 1,5	3 2	3	3	-	-	-

Примечания: 1. Допускается замена пленки полиэтиленовой на пленку поливинилбутиральную клеящую по ГОСТ 9438-85; ленту поливинилхлоридную липкую по ТУ 6-19-103-78, ТУ 102-320-82; пленку полиэтиленовую термоусадочную по ГОСТ 25951-83 с соблюдением толщин, указанных в таблице.

2. Допускается применение других материалов, обеспечивающих уровень сопротивления паропроницанию не ниже, чем у приведенных в таблице.

Для материалов с закрытой пористостью, имеющих коэффициент паропроницаемости менее 0,1 мг/ (м · ч · Па), во всех случаях принимается один пароизоляционный слой. При применении заливочного пенополиуретана пароизоляционный слой не устанавливается.

Швы пароизоляционного слоя должны быть герметизированы; при температуре изолируемой поверхности ниже минус 60°С следует также производить герметизацию швов покровного слоя герметиками или пленочными клеящимися материалами.

В конструкциях не следует применять металлические крепежные детали, проходящие через всю толщину теплоизоляционного слоя. Крепежные детали или их части следует предусматривать из материалов с теплопроводностью не более 0,23 Вт/(м·°C).

Деревянные крепежные детали должны быть обработаны антисептическим составом. Стальные части крепежных деталей должны быть окрашены битумным лаком.

2.6. Для теплоизоляционного слоя трубопроводов с положительной температурой при бесканальной прокладке следует применять материалы со средней плотностью не более 600 кг/м ³ и теплопроводностью не более 0,13 Вт/(м ⋅°C) при температуре материала 20°C и влажности, указанной в соответствующих государственных стандартах или технических условиях.

Конструкция тепловой изоляции трубопроводов при бесканальной прокладке должна обладать прочностью на сжатие не менее 0,4 МПа.

Тепловую изоляцию трубопроводов, предназначенных для бесканальной прокладки, следует выполнять в заводских условиях.

- 2.7. Расчетные характеристики теплоизоляционных материалов и изделий следует принимать по справочным приложениям 1 и 2.
 - 2.8. Теплоизоляционные конструкции следует предусматривать из материалов, обеспечивающих:

тепловой поток через изолированные поверхности оборудования и трубопроводов согласно заданному технологическому режиму или нормированной плотности теплового потока;

исключение выделения в процессе эксплуатации вредных, пожароопасных и взрывоопасных, неприятно пахнущих веществ в количествах, превышающих предельно допустимые концентрации;

исключение выделения в процессе эксплуатации болезнетворных бактерий, вирусов и грибков.

- 2.9. Съемные теплоизоляционные конструкции должны применяться для изоляции люков, фланцевых соединений, арматуры, сальниковых и сильфонных компенсаторов трубопроводов, а также в местах измерений и проверки состояния изолируемых поверхностей.
- 2.10. Применение засыпной изоляции трубопроводов при подземной прокладке в каналах и бесканально не допускается.
- 2.11. Для тепловой изоляции оборудования и трубопроводов, содержащих вещества, являющиеся активными окислителями, не следует применять материалы самовозгорающиеся и изменяющие физико-химические, в том числе взрыво- и пожароопасные свойства при контакте с ними.
- 2.12. Для оборудования и трубопроводов, подвергающихся ударным воздействиям и вибрации, не следует применять теплоизоляционные изделия на основе минеральной ваты и засыпную теплоизоляционную конструкцию.
- 2.13. Для оборудования и трубопроводов, устанавливаемых в цехах для производства и в зданиях для хранения пищевых продуктов и химико-фармацевтических товаров, следует применять теплоизоляционные материалы, не допускающие загрязнения окружающего воздуха. Под покровный слой из неметаллических материалов в помещениях хранения и переработки пищевых продуктов следует предусматривать установку сетки стальной из проволоки диаметром не менее 1 мм с ячейками размером не более 12х12 мм.

Применение теплоизоляционных изделий из минеральной ваты, базальтового или супертонкого стекловолокна допускается только в обкладках со всех сторон из стеклянной или кремнезёмной ткани и под металлическим покровным слоем.

2.14. Перечень материалов, применяемых для покровного слоя, приведен в рекомендуемом приложении 3.

Не допускается применение металлических покровных слоев при подземной прокладке трубопроводов. Покровный слой из стали рулонной холоднокатаной с полимерным покрытием (металлопласт) не допускается применять в местах, подверженных прямому воздействию солнечных лучей.

При применении напыляемого пенополиуретана для трубопроводов, прокладываемых в каналах, допускается покровный слой не предусматривать.

- 2.15. Теплоизоляционные конструкции из горючих материалов не допускается предусматривать для оборудования и трубопроводов, расположенных:
- а) в зданиях, кроме зданий IVa и V степеней огнестойкости, одно- и двухквартирных жилых домов и охлаждаемых помещений холодильников;
 - б) в наружных технологических установках, кроме отдельно стоящего оборудования;
 - в) на эстакадах и галереях при наличии кабелей и трубопроводов, транспортирующих горючие вещества.

При этом допускается применение из горючих материалов:

пароизоляционного слоя толщиной не более 2 мм;

слоя окраски или пленки толщиной не более 0,4 мм;

покровного слоя трубопроводов, расположенных в технических подвальных этажах и подпольях с выходом только наружу в зданиях I и II степеней огнестойкости при устройстве вставок длиной 3 м из негорючих материалов не менее чем через 30 м длины трубопровода;

теплоизоляционного слоя из заливочного пенополиуретана при покровном слое из оцинкованной стали для аппаратов и трубопроводов, содержащих горючие вещества с температурой минус 40°C и ниже в наружных технологических установках.

Покровный слой из трудногорючих материалов, применяемый для наружных технологических установок высотой 6 м и более, должен быть на основе стекловолокна.

2.16. Для трубопроводов надземной прокладки при применении теплоизоляционных конструкций из горючих материалов следует предусматривать вставки длиной 3 м из негорючих материалов не менее чем через 100 м длины трубопровода, участки теплоизоляционных конструкций из негорючих материалов на расстоянии не менее 5 м от технологических установок, содержащих горючие газы и жидкости.

При пересечении трубопроводом противопожарной преграды следует предусматривать теплоизоляционные конструкции из негорючих материалов в пределах размера противопожарной преграды.

3. РАСЧЕТ ТЕПЛОВОЙ ИЗОЛЯЦИИ

- 3.1*. Расчет толщины теплоизоляционного слоя производится:
- а) по нормированной плотности теплового потока через изолированную поверхность, которую следует принимать:

для оборудования и трубопроводов с положительными температурами, расположенных на открытом воздухе, - по обязательному приложению 4* (табл. 1, 2); расположенных в помещении, - по обязательному приложению 4* (табл. 3, 4);

для оборудования и трубопроводов с отрицательными температурами, расположенных на открытом воздухе, - по обязательному приложению 5* (табл. 1); расположенных в помещении, - по обязательному приложению 5* (табл. 2);

для паропроводов с конденсатопроводами при их совместной прокладке в непроходных каналах - по обязательному приложению 6*;

для трубопроводов двухтрубных водяных тепловых сетей при прокладке в непроходных каналах и подземной бесканальной прокладке - по обязательному приложению 7* (табл. 1, 2).

При проектировании тепловой изоляции для технологических трубопроводов, прокладываемых в каналах и бесканально, нормы плотности теплового потока следует принимать как для трубопроводов, прокладываемых на открытом воздухе;

- б) по заданной величине теплового потока;
- в) по заданной величине охлаждения (нагревания) вещества, сохраняемого в емкостях в течение определенного времени;
 - г) по заданному снижению (повышению) температуры вещества, транспортируемого трубопроводами;
 - д) по заданному количеству конденсата в паропроводах;
- е) по заданному времени приостановки движения жидкого вещества в трубопроводах в целях предотвращения его замерзания или увеличения вязкости;
 - ж) по температуре на поверхности изоляции, принимаемой не более °C:

для изолируемых поверхностей, расположенных в рабочей или обслуживаемой зоне помещений и содержащих вещества:

температурой выше 100°С	45
температурой 100°С и ниже	35
температурой вспышки паров не выше 45 °С	. 35
для изолируемых поверхностей, расположенных	на открытом воздухе в рабочей или обслуживаемой зоне, при:
металлическом покровном слое	55
для других видов покровного слоя	60

Температура на поверхности тепловой изоляции трубопроводов, расположенных за пределами рабочей или обслуживаемой зоны, не должна превышать температурных пределов применения материалов покровного слоя,

но не выше 75°C:

- з) с целью предотвращения конденсации влаги из окружающего воздуха на покровном слое тепловой изоляции оборудования и трубопроводов, содержащих вещества с температурой ниже температуры окружающего воздуха. Данный расчет следует выполнять только для изолируемых поверхностей, расположенных в помещении. Расчетная относительная влажность воздуха принимается в соответствии с заданием на проектирование, но не менее 60 %;
- и) с целью предотвращения конденсации влаги на внутренних поверхностях объектов, транспортирующих газообразные вещества, содержащие водяные пары или водяные пары и газы, которые при растворении в сконденсировавшихся водяных парах могут привести к образованию агрессивных продуктов.
- 3.2. Толщина теплоизоляционного слоя для оборудования и трубопроводов с положительными температурами определяется исходя из условий, приведенных в подп. 3.1a-3.1ж, 3.1и, для трубопроводов с отрицательными температурами из условий подп. 3.1a-3.1г.

Для плоской поверхности и цилиндрических объектов диаметром 2 м и более толщина теплоизоляционного слоя $\delta_{\it k}$, м, определяется по формуле

$$\delta_k = \lambda_k R_k, \qquad R_k = R_{tot} - \frac{1}{\alpha_s} - R_m \tag{1}$$

где $\lambda_{\it L}$ - теплопроводность теплоизоляционного слоя, определяемая по пп. 2.7 и 3.11, Вт/(м ·°C);

 R_k - термическое сопротивление теплоизоляционной конструкции, м 2 . °C/Bt;

 R_{tot} - сопротивление теплопередачи теплоизоляционной конструкции, $\,$ м 2 . $^{\circ}$ C/Bt;

 $lpha_e$ - коэффициент теплоотдачи от наружной поверхности изоляции, принимаемый по справочному приложению 9, Bt/(м 2 .°C);

 R_m - термическое сопротивление неметаллической стенки объекта, определяемое по п. 3.3, м 2 . °C/Bт.

Для цилиндрических объектов диаметром менее 2 м толщина теплоизоляционного слоя определяется по формуле

$$\delta_{k} = \frac{d}{2}(B-1) ,$$

$$\ln B = 2\pi\lambda_{k} \left[r_{tot} - r_{m} - \frac{1}{\alpha_{e}\pi(d+0,1)} \right],$$
(3)

где $B = \frac{d_i}{d}$ - отношение наружного диаметра изоляционного слоя к наружному диаметру изолируемого объекта;

 r_{tot} - сопротивление теплопередачи на 1 м длины теплоизоляционной конструкции цилиндрических объектов диаметром менее 2 м, (м.°C)/Вт;

- термическое сопротивление стенки трубопровода, определяемое по формуле (15);

d - наружный диаметр изолируемого объекта, м.

 r_m

Величины R_{tot} , и r_{tot} в зависимости от исходных условий определяются по формулам:

а) по нормированной поверхностной плотности теплового потока (подп. 3.1a)

$$R_{tot} = \frac{t_w - t_e}{qK_1} \quad , \tag{4}$$

где t_w - температура вещества, °C;

 t_e - температура окружающей среды, принимаемая согласно п. 3.6, °C;

q - нормированная поверхностная плотность теплового потока, принимаемая по обязательным приложениям 4*-7*, BT/M;

 ${\it K}_{
m l}\,$ - коэффициент, принимаемый по обязательному приложению 10;

по нормированной линейной плотности теплового потока

$$r_{tot} = \frac{t_w - t_e}{q_e K_1} \qquad , \tag{5}$$

где q_e - нормированная линейная плотность теплового потока с 1 м длины цилиндрической теплоизоляционной конструкции, принимаемая по обязательным приложениям 4^* - 7^* , BT/M;

б) по заданной величине теплового потока (подп. 3.1б)

$$R_{tot} = \frac{\left(t_w - t_e\right) A K_{red}}{Q} \,, \tag{6}$$

где A - теплоотдающая поверхность изолируемого объекта, м 2 ;

 K_{red} - коэффициент, учитывающий дополнительный поток теплоты через опоры, принимаемый согласно табл. 4:

Q - тепловой поток через теплоизоляционную конструкцию, Вт;

$$r_{tot} = \frac{\left(t_w - t_e\right)lK_{red}}{O} \,, \tag{7}$$

где l - длина теплоотдающего объекта (трубопровода), м;

в) по заданной величине охлаждения (нагревания) вещества, сохраняемого в емкостях (подп. 3.1в)

(8)

$$R_{tot} = \frac{3.6(t_{wm} - t_e)ZAK_{red}}{(V_m \mathbf{\rho}_m c_m + V_w \mathbf{\rho}_w c_w)(t_{w1} - t_{w2})}$$

где 3,6 - коэффициент приведения единицы теплоемкости, кДж/(кг· $^{\circ}$ C) к единице Вт·ч/(кг · $^{\circ}$ C);

 $t_{wm}^{}$ - средняя температура вещества, °C;

заданное время хранения вещества, ч;

 V_m - объем стенки емкости, м 3 ;

 $ho_{\!\scriptscriptstyle m}$ - плотность материала стенки, кг/м 3 ;

 $\mathcal{C}_{...}$ - удельная теплоемкость материала стенки, кДж/(кг·°С);

 V_w - объем вещества в емкости, м 3 ;

 $\rho_{_{\!W}}$ - плотность вещества, кг/м 3 ;

 \mathcal{C}_{w} - удельная теплоемкость вещества, кДж/(кг·°С);

 t_{w1} - начальная температура вещества, °С;

 $t_{_{\!W^2}}$ - конечная температура вещества, °С;

г) по заданному снижению (повышению) температуры вещества, транспортируемого трубопроводами (подп. 3.1 г):

при
$$\frac{t_{w1} - t_e}{t_{w2} - t_e} \ge 2 \qquad r_{tot} = \frac{3,6lK_{red}}{G_w c_w \ln \frac{t_{w1} - t_e}{t_{w2} - t_e}}, \tag{9}$$

при
$$\frac{t_{w1} - t_e}{t_{w2} - t_e} < 2 \qquad r_{tot} = \frac{3.6lK_{red}(t_{wm} - t_e)}{G_w c_w(t_{w1} - t_{w2})}, \tag{10}$$

где G_w - расход вещества, кг/ч.

Формулы (9), (10) применяются для газопроводов сухого газа, если отношение $\frac{t_{w1}}{P}$ < 5 , где P - давление газа,

МПа. Для паропроводов перегретого пара в знаменатель формулы (10) следует поставить произведение расхода пара на разность удельных энтальпий пара в начале и конце трубопровода;

д) по заданному количеству конденсата в паропроводе насыщенного пара (подп. 3.1д)

$$r_{tot} = \frac{3.6(t_w - t_e)lK_{red}}{G_w m r_p} \,, \tag{11}$$

где т - коэффициент, определяющий допустимое количество конденсата в паре;

 r_n - удельное количество теплоты конденсации пара, кДж/кг;

е) по заданному времени приостановки движения жидкого вещества в трубопроводе в целях предотвращения его замерзания или увеличения вязкости (подп. 3.1e)

$$r_{tot} = \frac{3.6ZK_{red}}{\frac{2(t_w - t_{wz})(V'_w \rho_w c_w + V'_m \rho_m c_m)}{t_w + t_{wz} - 2t_e} + \frac{0.25V'_w \rho_w r_w}{t_{wz} - t_e}}$$
(12)

где Z - заданное время приостановки движения жидкого вещества, ч;

 $t_{_{\!\scriptscriptstyle W\!Z}}$ - температура замерзания (твердения) вещества, °C;

 V_w^\prime и V_m^\prime - приведенные объемы вещества и материала трубопровода к метру длины, м 3 /м;

ж) для предотвращения конденсации влаги на внутренних поверхностях объектов, транспортирующих газообразные вещества, содержащие водяные пары (подп. 3.1 и):

для объектов (газоходов) прямоугольного сечения

$$R_{tot} = \frac{t_{\text{int}} - t_e}{\alpha_{\text{int}} \left(t_w - t_{\text{int}} \right)} , \qquad (13)$$

где $t_{
m int}$ - температура внутренней поверхности изолируемого объекта (газохода), °C;

 $a_{
m int}$ - коэффициент теплоотдачи от транспортируемого вещества к внутренней поверхности изолируемого объекта, Вт/(м 2 .°C);

для объектов (газоходов) диаметром менее 2 м

$$r_{tot} = \frac{t_{int} - t_e}{\alpha_{int} \pi \cdot d_{int} \left(t_w - t_{int} \right)}$$
(14)

где d_{int} - внутренний диаметр изолируемого объекта, м.

Примечание. При расчете толщины изоляции трубопроводов, прокладываемых в непроходных каналах и бесканально, следует дополнительно учитывать термическое сопротивление грунта, воздуха внутри канала и взаимное влияние трубопроводов.

3.3. При применении неметаллических трубопроводов следует учитывать термическое сопротивление стенки

трубопровода, определяемое по формуле

$$r_m = \frac{\ln \frac{d}{d_{\text{int}}}}{2\pi\lambda_m} \quad (15)$$

где λ_m - теплопроводность материала стенки, Вт/ (м ·°C).

Дополнительное термическое сопротивление плоских и криволинейных неметаллических поверхностей оборудования определяется по формуле

$$R_{m} = \frac{\delta_{m}}{\lambda_{m}} , \tag{16}$$

где $\delta_{\!_{m}}$ - толщина стенки оборудования.

3.4. Толщина теплоизоляционного слоя, обеспечивающая заданную температуру на поверхности изоляции (подп. 3.1ж), определяется:

для плоской и цилиндрической поверхности диаметром 2 м и более

$$\delta_k = \frac{\lambda_k (t_w - t_i)}{\alpha_e (t_i - t_e)}, \tag{17}$$

где t_i - температура поверхности изоляции, °C;

для цилиндрических объектов диаметром менее 2 м по формуле (2), причем В следует определять по формуле

$$B \ln B = \frac{2\lambda_k (t_w - t_i)}{\alpha_e d(t_i - t_e)},\tag{18}$$

3.5. Толщина теплоизоляционного слоя, обеспечивающая предотвращение конденсации влаги из воздуха на поверхности изолированного объекта (подп. 3.13) определяется по формулам:

для плоской и цилиндрической поверхности диаметром 2 м и более

$$\boldsymbol{\delta}_{K} = \frac{\boldsymbol{\lambda}_{K}}{\boldsymbol{\alpha}_{e}} \left(\frac{t_{e} - t_{w}}{t_{e} - t} - 1 \right);$$
(19)

для цилиндрических объектов диаметром менее 2 м по формуле (2), где В следует определять по формуле

$$B \ln B = \frac{2\lambda_k}{\alpha_e d} \left(\frac{t_e - t_w}{t_e - t_i} - 1 \right)$$
 (20)

Расчетные значения перепада $t_{e}-t_{i}$, °C, следует принимать по табл. 2.

Температура окружающего воздуха, °С	Расчетный перепад $t_e - t_i$, °C, при относительной влажности окружающего воздуха, %						
	50	60	70	80	90		
10	10,0	7,4	5,2	3,3	1,6		
15	10,3	7,7	5,4	3,4	1,6		
20	10,7	8,0	5,6	3,6	1,7		
25	11,1	8,4	5,9	3,7	1,8		
30	11,6	8,6	6,1	3,8	1,8		

- 3.6. За расчетную температуру окружающей среды следует принимать:
- а) для изолируемых поверхностей, расположенных на открытом воздухе:

для оборудования и трубопроводов при расчетах по нормированной плотности теплового потока - среднюю за год;

для трубопроводов тепловых сетей, работающих только в отопительный период, - среднюю за период со среднесуточной температурой наружного воздуха 8°C и ниже;

при расчетах с целью обеспечения нормированной температуры на поверхности изоляции - среднюю максимальную наиболее жаркого месяца;

при расчетах по условиям, приведенным в подп. 3.1в - 3.1е, 3.1и, - среднюю наиболее холодной пятидневки - для поверхностей с положительными температурами; среднюю максимальную наиболее жаркого месяца - для поверхностей с отрицательными температурами веществ;

- б) для изолируемых поверхностей, расположенных в помещении, согласно техническому заданию на проектирование, а при отсутствии данных о температуре окружающего воздуха 20°C;
 - в) для трубопроводов, расположенных в тоннелях, 40°С;
 - г) для подземной прокладки в каналах или при бесканальной прокладке трубопроводов:

при определении толщины теплоизоляционного слоя по нормам плотности теплового потока - среднюю за год температуру грунта на глубине заложения оси трубопровода;

при определении толщины теплоизоляционного слоя по заданной конечной температуре вещества - минимальную среднемесячную температуру грунта на глубине заложения оси трубопровода.

Примечание. При величине заглубления верхней части перекрытия канала (при прокладке в каналах) или верха теплоизоляционной конструкции трубопровода (при бесканальной прокладке) 0,7 м и менее за расчетную температуру окружающей среды должна приниматься та же температура наружного воздуха, что и при надземной прокладке.

3.7. За расчетную температуру теплоносителя при определении толщины теплоизоляционного слоя теплоизоляционной конструкции по нормам плотности теплового потока следует принимать среднюю за год, а в остальных случаях - в соответствии с техническим заданием.

При этом для трубопроводов тепловых сетей за расчетную температуру теплоносителя принимают:

для водяных сетей - среднюю за год температуру воды, а для сетей, работающих только в отопительный период, - среднюю за отопительный период;

для паровых сетей - среднюю по длине паропровода максимальную температуру пара;

для конденсатных сетей и сетей горячего водоснабжения - максимальную температуру конденсата или горячей воды.

При заданной конечной температуре пара принимается наибольшая из полученных толщин тепловой изоляции, определенных для различных режимов работы паровых сетей.

3.8. При определении температуры грунта в температурном поле подземного трубопровода тепловых сетей температуру теплоносителя следует принимать:

для водяных тепловых сетей - по графику температур при среднемесячной температуре наружного воздуха расчетного месяца:

для паровых сетей - максимальную температуру пара в рассматриваемом месте паропровода (с учетом падения температуры пара по длине трубопровода);

для конденсатных сетей и сетей горячего водоснабжения - максимальную температуру конденсата или воды.

Примечание. Температуру грунта в расчетах следует принимать: для отопительного периода - минимальную среднемесячную, для неотопительного периода - максимальную среднемесячную.

3.9. За расчетную температуру окружающей среды при определении количества теплоты, выделившейся с поверхности теплоизоляционной конструкции за год, принимают:

для изолируемых поверхностей, расположенных на открытом воздухе, - в соответствии с подп. 3.6а;

для изолируемых поверхностей, расположенных в помещении или тоннеле, - в соответствии с подп. 3.6б, в;

для трубопроводов при прокладке в каналах или бесканальной - в соответствии с подп. 3.6г.

- 3.10. Для изолируемых поверхностей с положительными температурами толщина теплоизоляционного слоя, определенная по условиям п. 3.1, должна быть проверена по подп. 3.1а и 3.1ж, а для поверхностей с отрицательными температурами по подп. 3.1а и 3.1з. В результате принимается большее значение толщины слоя.
- 3.11. При бесканальной прокладке теплопроводность основного слоя теплоизоляционной конструкции λ_k определяется по формуле

$$\lambda_k = \lambda K, \tag{21}$$

где

λ

- теплопроводность сухого материала основного слоя, $Bt/(m \cdot {}^{\circ}C)$, принимаемая по справочному приложению

- коэффициент увлажнения, учитывающий увеличение теплопроводности от увлажнения, принимаемый в зависимости от вида теплоизоляционного материала и типа грунта по табл. 3.

Таблица 3

	Коэффициент увлажнения К					
Материал	Тип грунта по ГОСТ 25100-82					
теплоизоляционного слоя	маловлажный влажный насыщен					
			водой			
Армопенобетон	1,15	1,25	1,4			
Битумоперлит	1,1	1,15	1,3			
Битумовермикулит	1,1	1,15	1,3			
Битумокерамзит	1,1	1,15	1,25			
Пенополиуретан	1,0	1,05	1,1			

Полимербетон	1,05	1,1	1,15
Фенольный поропласт ФЛ	1,05	1,1	1,15

3.12. Тепловой поток через изолированные опоры труб, фланцевые соединения и арматуру следует учитывать коэффициентом к длине трубопровода $K_{\it red}$, принимаемым по табл. 4.

Таблица 4

Способ прокладки трубопроводов	Коэффициент
	K_{red}
На открытом воздухе, в непроходных каналах, тоннелях и помещениях:	
для стальных трубопроводов на подвижных опорах, условным проходом, мм:	
до 150	1,2
150 и более	1,15
для стальных трубопроводов на подвесных опорах	1,05
для неметаллических трубопроводов на подвижных и подвесных опорах	1,7
для неметаллических трубопроводов, изолируемых совместно с основанием	1,2
при групповой прокладке неметаллических трубопроводов на сплошном настиле	2,0
Бесканальный	1,15

Тепловой поток через опоры оборудования следует учитывать коэффициентом 1,1.

3.13. Значения коэффициента теплоотдачи от наружной поверхности покровного слоя и коэффициента теплоотдачи от воздуха в канале к стенке канала определяются расчетом. Допускается принимать эти коэффициенты по справочному приложению 9.

4. ТЕПЛОИЗОЛЯЦИОННЫЕ КОНСТРУКЦИИ

- 4.1. Расчетную толщину индустриальных теплоизоляционных конструкций из волокнистых материалов и изделий следует округлять до значений, кратных 20, и принимать согласно рекомендуемому приложению 11; для жестких, ячеистых материалов и пенопластов следует принимать ближайшую к расчетной толщине изделий по соответствующим государственным стандартам или техническим условиям.
 - 4.2. Минимальную толщину теплоизоляционного слоя из неуплотняющихся материалов следует принимать:

при изоляции тканями, полотном холстопрошивным, шнурами - 30 мм;

при изоляции жесткоформованными изделиями - равной минимальной толщине, предусматриваемой государственными стандартами или техническими условиями;

при изоляции изделиями из волокнистых уплотняющихся материалов - 40 мм.

4.3. Предельная толщина теплоизоляционной конструкции при подземной прокладке в каналах и тоннелях приведена в рекомендуемом приложении 12.

- 4.4. Толщину и объем теплоизоляционных изделий из уплотняющихся материалов до установки на изолируемую поверхность следует определять по рекомендуемому приложению 13.
- 4.5. Для поверхностей с температурой выше 250°C и ниже минус 60°C не допускается применение однослойных конструкций. При многослойной конструкции последующие слои должны перекрывать швы предыдущего. При изоляции жесткоформованными изделиями следует предусматривать вставки из волокнистых материалов в местах устройства температурных швов.
- 4.6. Толщину металлических листов, лент, применяемых для покровного слоя, в зависимости от наружного диаметра или конфигурации теплоизоляционной конструкции следует принимать по табл. 5.

Таблица 5

	Толщина листа, мм, при диаметре изоляции, мм					
Материал	350 и	св.350	св. 600	св.1600 и плоские		
	менее	до 600	до 1600	поверхности		
Сталь тонколистовая	0,35-0,5	0,5-0,8	0,8	1,0		
Листы из алюминия и алюминиевых сплавов	0,3	0,5-0,8	0,8	1,0		
Ленты из алюминия и алюминиевых сплавов						
	0,25-0,3	0,3-0,8	8,0	1,0		

Примечания: 1. Листы и ленты из алюминия и алюминиевых сплавов толщиной 0,25-0,3 мм рекомендуется применять гофрированными.

- 2. Для изоляции поверхностей диаметром изоляции более 1600 мм и плоских, расположенных в помещении с неагрессивными и слабоагрессивными средами, допускается применять металлические листы и ленты толщиной 0,8 мм, а для трубопроводов диаметром изоляции более 600 до 1600 мм 0,5 мм.
 - 4.7. Для предохранения покровного слоя от коррозии следует предусматривать:

для кровельной стали - окраску;

для листов и лент из алюминия и алюминиевых сплавов при применении теплоизоляционного слоя в стальной некрашеной сетке или устройстве стального каркаса - установку под покровный слой прокладки из рулонного материала.

4.8. Конструкцию тепловой изоляции следует предусматривать исключающей деформацию и сползание теплоизоляционного слоя в процессе эксплуатации.

На вертикальных участках трубопроводов и оборудования через каждые 3 - 4 м по высоте следует предусматривать опорные конструкции.

- 4.9. Размещение крепежных деталей на изолируемых поверхностях следует принимать в соответствии с ГОСТ 17314-81.
- 4.10. Детали, предусматриваемые для крепления теплоизоляционной конструкции на поверхности с отрицательными температурами, должны иметь защитное покрытие от коррозии или изготавливаться из коррозионно-стойких материалов.

Крепежные детали, соприкасающиеся с изолируемой поверхностью, следует предусматривать:

для поверхностей с температурой от минус 40 до 400°C - из углеродистой стали;

для поверхностей с температурой выше 400 и ниже минус 40°C - из того же материала, что и изолируемая поверхность.

Крепежные детали основного и покровного слоев теплоизоляционных конструкций оборудования и трубопроводов, расположенных на открытом воздухе в районах с расчетной температурой окружающего воздуха

ниже минус 40°C, следует применять из легированной стали или алюминия.

- 4.11. Температурные швы в покровных слоях горизонтальных трубопроводов следует предусматривать у компенсаторов, опор и поворотов, а на вертикальных трубопроводах в местах установки опорных конструкций.
- 4.12. Выбор материала покровных слоев теплоизоляционных конструкций оборудования и трубопроводов, расположенных на открытом воздухе в районах с расчетной температурой окружающего воздуха минус 40°С и ниже, следует производить с учетом температурных пределов применения материалов по государственным стандартам или техническим условиям.
- 4.13. Для конструкций тепловой изоляции оборудования и трубопроводов с отрицательными температурами веществ крепление покровного слоя следует предусматривать, как правило, бандажами. Крепление покровного слоя винтами допускается предусматривать при диаметре изоляционной конструкции более 800 мм.

ПРИЛОЖЕНИЕ 1 Справочное

РАСЧЕТНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ

		Теплопровод	ность		
Материал, изделие, ГОСТ или ТУ	Средняя плотность в конструкции,	теплоизоляционного конструкці λ_k	материала в	Температура применения, °С	Группа горючес
	ρ	Bt/(M°C)			
	кг/м 3	для поверхностей с то °C	емпературой,		
		20 и выше	19 и ниже		
Изделия из пенопласта ФРП-1 и резопена, ГОСТ 22546-77, группы:					
75	65-85	0,041+0,00023 ^t m	0,051-0,045	От минус 180 до 130	Трудногорючи
100	86-110	0,043+0,00019 ^t m	0,057-0,051	От минус 180 до 150	
Изделия перлитоцементные, ГОСТ 18109-80, марки:					
250	250	0,07+0,00019 ^t m	-	От 20 до 600	Негорючие
300	300	0,076+0,00019 t _m	-		
350	350	0,081+0,00019 ^t m	-		
Изделия теплоизоляционные известково- кремнезёмистые, ГОСТ 24748-81, марки:					

200	200	0,069+0,00015 ^t m	-	От 20 до 600	Негор
225	225	0,078+0,00015 ^t _m ,	-		
Изделия минераловатные с гофрированной структурой для промышленной тепловой изоляции, ТУ 36.16.22-8-86, марки:	В зависимости от диаметра изолируемой поверхности				
75	От 66 до 98	0,041+0,00034 ^t m	0,054-0,05	От минус 60 до 400	Негор
100	От 84 до 130	0,042+0,0003 ^t m			
Изделия теплоизоляционные вулканитовые, ГОСТ 10179-74, марки:					
300	300	0,074+0,00015 ^t m	-	От 20 до 600	Негор
350	350	0,079+0,00015 ^t m	-		
400	400	0,084+0,00015 ^t m	-		
Маты звукопоглощающие базальтовые марки БЗМ, РСТ УССР 1977-87	До 80	0,04+0,0003 ^t m	-	От минус 180 до 450 в оболочке из ткани стеклянной; до 700 - в оболочке из кремнеземной ткани	Herop
Маты минераловатные прошивные, ГОСТ 21880-86, марки:				От минус 180 до 450 для матов на ткани, сетке, холсте из	Негор
100	102-132	0,045+0,00021 ^t m	0,059-0,054	стекловолокна: до 700 - на	
125	133-162	0,049+0,0002 ^t _m		металлической сетке	

Маты из стеклянного штапельного волокна на синтетическом связующем, ГОСТ 10499-78, марки:					
MC-35	40-56	0,04+0,0003 ^t _m	0,048	От минус 60 до 180	Негор
MC-50	58-80	0,042+0,00028 ^t _m	0,047		
Маты и вата из супертонкого стеклянного волокна без связующего, ТУ 21 РСФСР 224-87	60-80	0,033+0,00014 ^t m	0,044-0,037	От минус 180 до 400	Негор
Плиты теплоизоляционные из минеральной ваты на синтетическом связующем, ГОСТ 9573-82, марки:					
50	55-75	0,04+0,00029 ^t m	0,054-0,05	От минус 60 до 400	
75	75-115	0,043+0,00022 ^t m	0,054-0,05		Негор
125	90-150	0,044+0,00021 ^t m	0,057-0,051	От минус 180 до 400	
175	150-210	0,052+0,0002 ^t m	0,06 -0,054		
Плиты из стеклянного штапельного волокна полужесткие, технические, ГОСТ 10499-78, марки:			2.252	- 20 - 10	
ППТ-50	42-58	0,042+0,00035 ^t m	0,053	От минус 60 до 180	Трудно
ППТ-75	59-86	0,044+0,00023 ^t m			
Плиты теплоизоляционные из минеральной ваты на битумном связующем, ГОСТ 10140-80, марки:					
	75-115		0,054-0,057		Марк

100	90-120	-	0,054-0,057	От минус 100 до 60	негорючие; остальные - горючие
150	121-180	-	0,058-0,062		. opio mo
200	151-200	_	0,061-0,066		
Плиты теплоизоляционные из пенопласта на основе резольных фенолформальдегидных смол, ГОСТ 20916-87, марки:					
50	Не более 50	0,040+0,00022 ^t m	0,049-0,042	От минус 180 до	Трудногорючи
80	Св. 70 до 80		0,051-0,045	130	
00	Cp. 90 pp. 100	0,042+0,00023 ^t m	0.057.0.054		
90	Св. 80 до 100	0,043+0,00019 ^t m	0,057-0,051		
Полотна холстопрошивные стекловолокнистые, ТУ 6-48-0209777-1-88, марки:					
XПС-T-5	180-320	0,047+0,00023 ^t m	0,053-0,047	От минус 200 до 550	Негорючие
ХПС-Т-2,5	130-230				
Песок перлитовый вспученный мелкий, ГОСТ 10832-83, марки:					
75	110	0,052+0,00012 ^t m	0,05 -0,042	От минус 200 до 875	Негорючий
100	150	0,055+0,00012 ^t m	0,054-0,047		
150	225		-		
		0,058+0,00012 ^t m			
Полуцилиндры и цилиндры минераловатные на синтетическом связующем, ГОСТ 23208-83, марки:					

100	75-125	0,049+0,00021 ^t _m	0,047-0,053	От минус 180 до 400	Него
150	126-175	0,051+0,0002 ^t _m	0,054-0,059		
200	176-225	0,053+0,00019 ^t m	0,062-0,057		
Плиты пенополистиропьные ГОСТ 15588-86, марки:					
20	20	-	0,048-0,04	От минус 180 до	Гор
25	25	-	0,044-0,035	70	
30, 40	30, 40	-	0,042-0,032		
Пенопласт плиточный, ТУ 6-05- 1178-87, марки:					
ПС-4-40	40	-	0,041-0,032	От минус 180 до 60	Гој
ПС-4-60	60	-	0,048-0,039		
ПС-4-65	65	-	0,048-0,039		
Пенопласт плиточный ПХВ, ТУ 6-05-1179-83. марки:					
ПХВ-1-85	85	-	0,04-0,03	От минус 180 до 60	Го
ПХВ-1-115	115	-	0,043-0,032		
ПХВ-2-150	150	-	0,047-0,036		
Пенопласт плиточный марки ПВ-1, ТУ 6-05-1158-87	65, 95	-	0,043-0,032	От минус 180 до 60	Го
Пенопласт поливинилхлоридный эластичный ПВХ-Э, ТУ 6-05- 1269-75	150	-	0,05-0,04	От минус 180 до 60	Го

Пенопласт термореактивный ФК-20 и ФФ, жесткий, ТУ 6-05-1303-76, марки:					
ФК-20	170, 200	-	0,055-0,052	От 0 до 120	Горючий
ФФ	170, 200	-	0,055-0,052	От минус 60 до 150	Трудногорючи
Пенополиуретан ППУ-331/3 (заливочный)	40-60	-	0,036-0,031	От минус 180 до 120	Горючий
(carried instr)	60-80	-	0,037-0,032	120	
Пенопласт полиуретановый эластичный ППУ-ЭТ, ТУ 6-05-1734-75	40-50	-	0,043-0,038	От минус 60 до 100	Горючий
Полотно иглопробивное стеклянное теплоизоляционное марки ИПС-Т-1000, ТУ 6-11-570-83	140	0,047+0,00023 ^t _m	0,053-0,047	От минус 200 до 550	Негорючее
Ровинг (жгут) из стеклянных комплексных нитей, ГОСТ 17139-79	200-250	-	0,065-0,062	От минус 180 до 450	Негорючий
Шнур асбестовый, ГОСТ 1779- 83, марки:					
ШАП	100-160	0,093+0,0002 ^t m	-	От 20 до 220	Трудногорючи
ШАОН	750-600	0,13+0,00026 ^t m	-	От 20 до 400	Негорючий
Шнур теплоизоляционный из минеральной ваты, ТУ 36-1695-79, марки:				От минус 180 до 600 в зависимости от	В сетчатых трубках из металлической
200	200	0,056+0,00019 ^t m	0,069-0,068	материала сетчатой трубки	проволоки и нити стеклянной
250	250	0,058+0,00019 ^t m	-		негорючий; остальной- трудногорючий
Холсты из микроультрасупертонкого стекломикро- кристаллического штапельного волокна из горных пород, РСТ УССР 1970-86, марка БСТВ-ст	До 80	0,041+0,00029 ^t m	0,04	От минус 269 до 600	Негорючие

Примечания: 1. t(m) - средняя температура теплоизоляционного слоя, °C; $t_m = \frac{t_w + 40}{2}$ - на открытом воздухе в летн

время, в помещении, в каналах, тоннелях, технических подпольях, на чердаках и в подвалах зданий; $t_m = \frac{t_w}{2}$

- на открытом воздухе в зимнее время, где t_w температура вещества.
- 2. Большее значение расчетной теплопроводности теплоизоляционного материала в конструкции для поверхностей температурой 19°C и ниже относится к температуре вещества от минус 60 до 20°C, меньшее к температуре минус 140°C ниже. Для промежуточных значений температур теплопроводность определяется интерполяцией.
 - 3. При изоляции поверхностей с применением жестких плит расчетную теплопроводность следует увеличивать на 10%.
 - 4. Допускается применение других материалов, отвечающих требованиям пп. 2.3; 2.4.

ПРИЛОЖЕНИЕ 2 Справочное

РАСЧЕТНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ, ПРИМЕНЯЕМЫХ ДЛЯ ИЗОЛЯЦИИ ТРУБОПРОВОДОВ ПРИ БЕСКАНАЛЬНОЙ ПРОКЛАДКЕ

Материал	Условный проход трубопровода, мм	Средняя плотность, р, кг/м	Теплопроводность сухого материала, λ , Вт/(м °C), при 20°C	Максимальная температура вещества, °С
Армопенобетон	150-800	350-450	0,105-0,13	150
Битумоперлит	50-400	450-550	0,11 -0,13	130*
Битумокерамзит	До 500	600	0,13	130*
Битумовермикулит	До 500	600	0,13	130*
Пенополимербетон	100-400	400	0,07	150
Пенополиуретан	100-400	60-80	0,05	120
Фенольный поропласт ФЛ монолитный	До 1000	100	0,05	150
* Допускается прим	। иенение до темпера	атуры 150°C пр	и качественном методе	отпуска теплоты.

ПРИЛОЖЕНИЕ 3 Рекомендуемое

МАТЕРИАЛЫ ДЛЯ ПОКРОВНОГО СЛОЯ ТЕПЛОВОЙ ИЗОЛЯЦИИ

Материал, ГОСТ или ТУ	Применяемая толщина, мм	Группа горючести
1. Металлические	, , , , , , , , , , , , , , , , , , , ,	
Листы из алюминия и алюминиевых сплавов, ГОСТ 21631-76, марки АДО, АД1, АМц, АМг2, В95	0,3; 0,5-1	Негорючие
Ленты из алюминия и алюминиевых сплавов, ГОСТ 13726-78, марки АДО, АД1, АМц, АМг2, В95	0,25-1	Негорючие
Сталь тонколистовая оцинкованная с непрерывных линий, ГОСТ 14918-80	0,35-1	Негорючая
Сталь тонколистовая кровельная, ОСТ 14-11-196-86	0,5-0,8	Негорючая
Прокат тонколистовой из углеродистой стали качественной и обыкновенного качества, ГОСТ 16523-89	0,35-1	Негорючий
Оболочки гофрированные для теплоизоляционных конструкций отводов трубопроводов, ОСТ 36-67-82	0,2 2,5	Негорючие Горючие
Сталь рулонная холоднокатаная с полимерным покрытием (металлопласт) ТУ 14-1-1114-74	0,8-1,3	Трудногорючая
2. На основе синтетических полимеров		
Стеклотекстолит конструкционный КАСТ-В, ГОСТ 10292-74Е	0,5-1,2	Горючий
Материалы армопластмассовые для защиты покрытий тепловой изоляции трубопроводов, ТУ 36-2168-85, марки:		
АПМ-1	2,2	Горючий
АПМ-2	2,1	Трудногорючий
АПМ-К	2,1	Горючий
Стокпопластик рулонный РСТ, ТУ 6-11-145-80, марки РСТ-А, РСТ-Б, РСТ-Х	0,25-0,5	Трудногорючий
Стеклопластик марки ФСП (стеклопластик фенольный покровный), ТУ 6-11-150-76	0,3; 0,6	Горючий
Пленка винипластовая каландрированная КПО, ГОСТ 16398-81	0,4-1	Горючая
Пленка из вторичного поливинилхлоридного сырья, ТУ 63.032.3-88	1,3	Горючая
Стеклотекстолит покровный листовой СТПЛ, ТУ 36-1583-88, марки:		
СТПЛ-СБ	0,3	_
стпл-ть	0,5	Трудногорючий
стпл-вп	0,8	
3. На основе природных полимеров		
Рубероид, ГОСТ 10923-82, марка РКК-420	2-3	Горючий
Стеклорубероид, ГОСТ 15879-70	2,5	Горючий

	İ	
Толь кровельный и гидроизоляционный, ГОСТ 10999-76, марки ТКК-350, ТКК-400	1,0-1,5	Горючий
Пергамин кровельный, ГОСТ 2697-83	1,0-1,5	Горючий
Рубероид, покрытый стеклотканью, ТУ 21 ЭССР 48-83	-	Горючий
Изол, ГОСТ 10296-79	2	Горючий
4. Минеральные		
Стеклоцемент текстолитовый для теплоизоляционных конструкций, ТУ 36-940-85	1,5-2	Негорючий
Листы асбестоцементные плоские, ГОСТ 18124-75	6-10	Негорючие
Листы асбестоцементные волнистые унифицированного профиля, ГОСТ 16233-77	5-8	Негорючие
Штукатурка асбестоцементная	10-20	Негорючая
5. Дублированные фольгой		
Фольга алюминиевая дублированная для теплоизоляционных конструкций, ТУ 36-1177-77	0,5-1,5	Дублированная бумагой и картоном - горючая, остальные - трудногорючие
Фольгорубероид для защитной гидроизоляции утеплителя трубопроводов, ТУ 21 ЭССР 69-83	1,7-2	Горючий
Фольгоизол, ГОСТ 20429-84	2-2,5	Горючий
Примечание. При применении покровных слоев из листарактер и степень агрессивности окружающей среды и произв		следует учитывать

ПРИЛОЖЕНИЕ 4*

Обязательное

НОРМЫ ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ЧЕРЕЗ ПОВЕРХНОСТЬ ИЗОЛЯЦИИ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ С ПОЛОЖИТЕЛЬНЫМИ ТЕМПЕРАТУРАМИ

Таблица 1

Нормы плотности теплового потока при расположении оборудования и трубопроводов на открытом воздухе и общей продолжительности работы в год более 5000 ч

Условный	Сре	редняя температура теплоносителя, °C											
проход тру-													
бопровода,	20	50	100	150	200	250	300	350	400	450	500	550	600
MM													
	Нор	мы л	инейно	й пло	THOCT	и теп	ловог	о пот	ока,	Вт/м			
15	3	8	16	24	34	45	55	67	80	93	108	123	140

20	4	9	18	28	38	49	61	74	88	103	119	135	152
25	4	11	20	30	42	54	66	80	95	111	128	146	165
40	5	12	24	36	48	62	77	93	110	128	147	167	188
50	6	14	25	38	52	66	83	100	118	136	156	177	199
65	7	15	29	44	58	75	92	111	131	152	173	197	220
80	8	17	32	47	62	80	99	119	139	162	185	209	226
100	9	19	35	52	69	88	109	130	152	175	200	225	252
125	10	22	40	57	75	99	121	144	169	194	221	250	279
150	11	24	44	62	83	109	133	157	183	211	240	270	301
200	15	30	53	75	99	129	157	185	216	247	280	314	349
250	17	35	61	86	112	145	174	206	238	273	309	345	384
300	20	40	68	96	126	160	194	227	262	300	339	378	420
350	23	45	75	106	138	177	211	248	286	326	368	411	454
400	24	49	83	125	150	191	228	267	308	351	395	440	487
450	27	53	88	123	160	204	244	284	327	373	418	466	517
500	29	58	96	135	171	220	261	305	349	398	446	496	549
600	34	66	110	152	194	248	294	342	391	444	497	554	611
700	39	75	122	169	214	273	323	375	429	485	544	604	664
800	43	83	135	172	237	301	355	411	469	530	594	657	723
900	48	92	149	205	258	328	386	446	509	574	642	710	779
1000	53	101	163	223	280	355	418	482	348	618	691	753	837
Криволиней- ные поверх	Нор	мы по	верхн	остно	й пло	THOCT	и теп	ловог	о пот	ока,	Вт/м 2		
ности диаметром более 1020 мм и плоские	5	28	44	57	69	85	97	109	122	134	146	157	169

Примечание: Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица 2

Нормы плотности теплового потока при расположении оборудования и трубопроводов на открытом воздухе и общей продолжительности работы в год 5000 ч и менее

Условный проход тру-	Сре	дняя	темпе	ратур	а теп	лонос	ителя	, °C					
бопровода, мм	20	50	100	150	200	250	300	350	400	450	500	550	600
	Нор	мы ли	нейно	й пло	THOCT	и теп	ловог	о пот	ока,	Вт/м			
15	4	9	18	28	38	48	61	74	87	102	117	134	152
20	5	11	21	31	43	54	67	81	97	113	130	148	167
25	5	12	23	34	47	60	74	89	104	122	140	160	180
40	7	15	27	40	54	71	86	103	122	142	163	185	208
50	7	16	30	44	58	75	93	111	130	151	174	197	221
65	8	19	34	50	67	85	104	125	146	170	194	220	245
80	9	21	37	54	71	92	112	134	157	181	208	234	262
100	11	23	41	60	80	101	123	146	171	198	226	253	283
125	12	26	46	66	88	114	138	164	191	221	251	282	314
150	15	29	52	73	97	126	152	180	210	241	272	305	340
200	18	36	63	89	117	151	181	215	249	284	321	359	399
250	21	42	72	103	132	170	203	240	276	316	356	398	441
300	25	48	83	115	149	189	228	266	307	349	393	438	485
350	29	54	92	127	164	209	250	291	335	382	429	477	527
400	31	60	100	139	178	226	271	317	362	412	462	513	567
450	34	66	108	149	191	244	290	338	386	439	491	545	602
500	37	72	117	162	206	264	311	362	415	470	526	583	642
600	44	82	135	185	236	299	354	409	467	528	590	653	718
700	49	94	151	205	262	331	390	451	513	580	646	714	784
800	55	105	168	228	290	367	431	496	564	636	708	782	857
900	62	116	185	251	318	399	471	541	614	691	768	848	928
1000	68	127	203	273	345	435	510	586	664	747	829		1003
Криволиней-	Hon	мы по	верхн	ОСТНО	й ппо	тност	и теп	ловот	о пот	ока	Вт/м		
ные поверх	_							135				201	017
ности диаме- тром более 1020 мм и плоские	21	36	58	72	89	109	125	133	156	171	186	201	217

Примечание: Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Нормы плотности теплового потока при расположении оборудования и трубопроводов в помещении и общей продолжительности работы в год более 5000 ч

Условный	Сре	дняя	темпе	ратур	а теп	лонос	ителя	, °C				
проход тру- бопровода, мм	50	100	150	200	250	300	350	400	450	500	550	600
	Нор	мы ли	нейно	й пло	THOCT	и теп	ловог	о пот	ока,	Вт/м		
15	6	14	22	32	42	53	65	77	91	106	120	136
20	7	16	26	36	46	58	71	85	100	116	132	149
25	8	18	28	39	51	63	78	92	108	125	142	160
40	10	21	33	46	59	74	90	107	125	143	163	184
50	10	22	35	49	64	79	96	114	133	152	173	194
65	12	26	40	55	72	90	107	127	148	169	192	216
80	13	28	43	59	78	95	114	135	158	180	204	229
100	14	31	48	65	84	104	125	147	170	195	220	247
125	17	35	53	72	94	116	140	164	190	216	243	273
150	19	39	58	78	104	128	152	179	206	234	263	294
200	23	47	70	94	124	151	180	209	241	273	306	342
250	27	54	80	106	139	169	199	231	266	302	338	376
300	31	62	90	119	154	186	220	255	293	330	370	411
350	35	68	99	131	170	205	241	278	318	359	402	446
400	38	74	108	142	184	221	259	299	342	386	431	477
450	42	81	116	152	196	235	276	318	364	409	456	506
500	46	87	125	164	211	253	296	341	388	435	486	538
600	54	100	143	186	238	285	332	382	434	486	542	598
700	59	111	159	205	262	313	365	418	474	530	591	651
800	67	124	176	226	290	344	399	457	518	581	643	708
900	74	136	193	247	316	374	435	496	562	629	695	764
1000	82	149	210	286	342	405	467	534	606	676	747	820
Криволиней- ные поверх	Нор	мы по	верхн	остно	й пло	THOCT	и теп	ловог	о пот	ока,	Вт/м	
ности	23	40	54	66	83	95	107	119	132	143	155	166

диаме-
тром более
1020 мм и
плоские

Примечания:

- 1. При расположении изолируемых поверхностей в тоннеле к нормам плотности следует вводить коэффициент 0,85.
 - 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица 4

Нормы плотности теплового потока при расположении оборудования и трубопроводов в помещении и тоннеле и общей продолжительности работы в год 5000 ч и менее

Условный	Сред	т ккнр	емпер	атура	тепл	оноси	теля,	°C						
проход тру- бопровода, мм	50	100	150	200	250	300	350	400	450	500	550	600		
	Норг	мы лин	ейной	плот	ности	тепл	еплового потока, Вт/м							
15	7	16	25	35	46	58	70	83	98	113	129	146		
20	8	18	28	39	51	64	78	92	108	125	142	161		
25	9	20	31	43	56	70	85	100	118	135	154	173		
40	10	23	37	51	66	82	99	117	136	156	178	200		
50	12	26	39	54	71	88	106	125	146	166	190	213		
65	14	30	46	62	81	99	119	141	163	186	211	237		
80	16	33	50	67	86	106	128	150	175	199	226	253		
100	18	36	55	74	95	117	140	164	190	217	245	274		
125	20	41	62	82	108	132	157	183	213	242	272	303		
150	22	45	68	91	119	145	172	201	232	263	295	330		
200	29	56	82	110	143	173	205	239	274	310	347	386		
250	34	65	94	124	161	194	230	266	305	343	384	426		
300	38	74	106	139	180	216	255	294	337	379	423	469		
350	42	82	118	154	198	239	280	323	368	414	462	510		
400	48	90	130	168	215	259	303	349	397	446	496	549		
450	51	98	138	180	233	278	324	372	423	474	527	582		

	1											
500	57	106	150	194	251	298	348	399	453	507	564	622
600	65	122	172	222	286	338	394	450	510	570	634	695
700	73	136	191	247	315	374	433	494	559	624	691	760
800	82	152	212	274	349	412	477	543	614	685	757	830
900	91	167	234	300	382	450	520	592	668	743	821	903
1000	100	183	254	326	415	489	563	640	722	802	884	969
Криволиней-											. 2	
ные поверх	Норм	ы пов	ерхно	стной	плот	ности	тепл	ового	ПОТО	ка, В	T/M	
ности	29	50	68	84	106	121	136	150	167	181	196	210
диаме-												
тром более												
1020 мм и												
плоские												

Примечание. См. примечания к табл. 3

ПРИЛОЖЕНИЕ 5* Обязательное

НОРМЫ ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ЧЕРЕЗ ПОВЕРХНОСТЬ ИЗОЛЯЦИИ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ С ОТРИЦАТЕЛЬНЫМИ ТЕМПЕРАТУРАМИ

Таблица 1

Нормы плотности теплового потока при расположении оборудования и трубопроводов на открытом воздухе

Условный	Cn		ПОМП		na Be	IIIACMB	a, °C				
проход тру-	СЪ	сдпии	Temn	ерату	ра ве	щесть	a, c				
бопровода,	0	-10	-20	-40	-60	-80	-100	-120	-140	-160	-180
MM											
	IIo	~		~~					D=	/>-	
		_					пловог		ка, Вт		
20	3	3	4	6	7	9	10	12	14	16	17
25	3	4	5	6	8	9	11	12	15	17	18
23	٦	I	J	U	O	9	11	12	10	Ι/	10
40	4	5	5	7	9	10	12	13	16	18	19
50	5	5	6	8	9	11	13	14	16	19	20
65	6	6	7	9	10	12	14	15	17	20	21
03		O	,	,	10	12	14	13	Ι,	20	21
80	6	6	8	10	11	13	15	16	18	21	22
100	7	7	9	11	13	14	16	18	20	22	23
125	8	8	9	12	14	16	18	20	21	23	25

											ĺ
150	8	9	10	13	16	17	20	21	23	25	27
200	10	10	12	16	18	20	23	25	27	29	31
250	11	12	14	18	20	23	26	27	30	33	35
300	12	13	16	20	23	25	28	30	34	36	39
350	14	15	18	22	24	27	30	33	36	38	41
400	16	16	20	23	26	29	32	34	38	40	43
450	17	18	21	26	28	31	36	37	39	42	45
500	19	20	23	27	30	33	35	38	41	44	46
Криволиней-					u						2
ные поверх	Нор	мы пс	верхн	OCTHO	рй пло	THOC	ги теп	лового	поток	а, Вт/	M
ности	11	12	12	13	14	15	15	16	17	18	19
диаме-											
тром более											
600 мм и											
плоские											

Примечания: 1. Нормы линейной плотности теплового потока при температуре веществ от 0 до 19 °C, а также при d_y меньше 20 мм следует определять экстраполяцией.

2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица 2

Нормы плотности теплового потока при расположении оборудования и трубопроводов в помещении

Условный	Сре	едняя	темп	ерату	ра ве	ществ	a, °C				
проход тру-	0	1.0	20	4.0	<u> </u>	0.0	100	100	1.40	1.60	100
бопровода, мм	0	-10	-20	-40	-60	-80	-100	-120	-140	-160	-180
MM											
	Hor	омы лі	инейн	ой пл	OTHOC	ти те	пловог	о пото	ка, Вт	/M	
20	5	6	6	7	8	9	10	10	11	13	14
25	6	7	7	8	9	10	11	14	16	17	20
40	7	7	8	9	11	12	13	16	17	19	21
50	7	8	9	10	12	13	15	17	19	20	22
65	8	9	9	11	13	14	16	18	20	21	23
80	9	9	10	12	13	15	17	19	20	22	24
100	10	10	11	13	14	16	18	20	21	23	25
125	11	11	12	14	16	18	20	21	23	26	27

150	12	13	13	16	17	20	21	23	25	27	30
200	15	16	16	19	21	23	25	27	30	31	34
250	16	17	19	20	23	26	27	30	33	36	38
300	19	20	21	23	26	29	31	34	37	39	41
350	21	22	23	26	29	31	34	36	38	41	44
400	23	24	26	28	30	34	36	38	41	44	46
450	25	27	28	30	33	35	37	40	42	45	48
500	28	29	30	33	35	37	40	42	45	47	49
Криволиней- ные поверх	Нор	мы пс	верхн	остно	й пло	THOCT	и тепл	ОВОГО	потока	, Вт/м	2
ности	15	16	17	18	19	19	20	21	22	22	23
диаме-											
тром более											
600 мм и											
плоские											

Примечание. См. примечания к табл. 1.

ПРИЛОЖЕНИЕ 6* Обязательное

НОРМЫ ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ЧЕРЕЗ ПОВЕРХНОСТЬ ИЗОЛЯЦИИ ПАРОПРОВОДОВ С КОНДЕНСАТОПРОВОДАМИ ПРИ ИХ СОВМЕСТНОЙ ПРОКЛАДКЕ В НЕПРОХОДНЫХ КАНАЛАХ, Вт/м

Условный	í	Паро-	Конден-	Паро-	Конден-	Паро-	Конден-	Паро-	Конден-	Паро-
проход	гру-	провод	сатопро-	провод	сатопро-	провод	сатопро-	провод	сатопро-	провод
бопровод	ца, мм		вод		вод		вод		вод	
Паро-	Конден-	Расчетн	делмет кви	ратура с	геплоноси	геля, °(C			
провод	сатор									
		115	100	150	100	200	100	250	100	300
25	25	22	18	30	18	41	18	51	18	64
30	25	23	18	32	18	43	18	54	18	69
40	25	25	18	33	18	45	18	58	18	73
50	25	27	18	36	18	52	18	64	18	79
65	30	31	21	43	21	58	21	71	21	88
80	40	35	23	46	23	62	23	81	22	98
100	40	38	23	49	23	66	23	81	22	98
125	50	42	24	53	24	72	24	88	23	107

150	70	45	27	58	27	78	27	94	26	115
200	80	52	27	68	29	89	29	108	28	131
250	100	58	31	75	31	99	31	119	31	147
300	125	64	33	83	33	110	33	133	33	159
350	150	70	38	90	38	118	38	143	37	171
400	180	75	42	96	42	127	42	153	41	183
450	200	81	44	103	44	134	44	162	44	193
500	250	86	50	110	50	143	50	173	49	207
600	300	97	55	123	55	159	55	190	54	227
700	300	105	55	133	55	172	55	203	54	243
800	300	114	55	143	55	185	55	220	54	-

Примечание: Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

ПРИЛОЖЕНИЕ 7*

НОРМЫ ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ЧЕРЕЗ ПОВЕРХНОСТЬ ИЗОЛЯЦИИ ТРУБОПРОВОДОВ ДВУХТРУБНЫХ ВОДЯНЫХ ТЕПЛОВЫХ СЕТЕЙ ПРИ ПРОКЛАДКЕ В НЕПРОХОДНЫХ КАНАЛАХ И ПОДЗЕМНОЙ БЕСКАНАЛЬНОЙ ПРОКЛАДКЕ

Таблица 1

Нормы плотности теплового потока трубопроводов при общей продолжительности работы в год 5000 ч и менее, Вт/м

Условный проход тру-	Трубопровод											
бопровода, мм	подающий	обратный	подающий	обратный								
	Среднегод	Среднегодовая температура теплоносителя, °С										
	65	50	90	50	110	50						
25	15	10	22	10	26	9						
30	16	11	23	11	28	10						
40	18	12	25	12	31	11						
50	19	13	28	13	34	12						
65	23	16	32	14	40	13						
80	25	17	35	15	43	14						

100	28	19	39	16	48	16	
125	29	20	42	17	52	17	
150	32	22	46	19	55	18	
200	41	26	55	22	71	20	
250	46	30	65	25	79	21	
300	53	34	74	27	88	24	
350	58	37	79	29	98	25	
400	65	40	87	32	105	26	
450	70	42	95	33	115	27	
500	75	46	107	36	130	28	
600	83	49	119	38	145	30	
700	91	54	139	41	157	33	
800	106	61	150	45	181	36	
900	117	64	162	48	199	37	
1000	129	66	169	51	212	42	
1200	157	73	218	55	255	46	
1400	173	77	241	59	274	49	

Примечания: 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях $65;90;110~^{\circ}C$ соответствуют температурным графикам 95-70 $^{\circ}C;$ 150-70 $^{\circ}C;$ 180-70 $^{\circ}C.$

Таблица 2

Нормы плотности теплового потока трубопроводов при общей продолжительности работы в год более 5000 ч, Вт/м

Условный проход	Трубопровод											
трубопровода, мм	подающий	обратный										
		Среднегодовая температура теплоносителя, ° С										
	65 50 90 50 110											
25	14	9	20	9	24	8						
30	15	10	20	10	26	9						
40	16	11	22	11	27	10						
50	17	12	24	12	30	11						

^{2.} Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

1	I	1	I		1	1
65	20	13	29	13	34	12
80	21	14	31	14	37	13
100	24	16	35	15	41	14
125	26	18	38	16	43	15
150	27	19	42	17	47	16
200	33	23	49	19	58	18
250	38	26	54	21	66	20
300	43	28	60	24	71	21
350	46	31	64	26	80	22
400	50	33	70	28	86	24
450	54	36	79	31	91	25
500	58	37	84	32	100	27
600	67	42	93	35	112	31
700	76	47	107	37	128	31
800	85	51	119	38	139	34
900	90	56	128	43	150	37
1000	100	60	140	46	163	40
1200	114	67	158	53	190	44
1400	130	70	179	58	224	48

Примечание. См. примечания к табл. 1.

Приложение 8 исключено.

ПРИЛОЖЕНИЕ 9 Справочное

РАСЧЕТНЫЕ КОЭФФИЦИЕНТЫ ТЕПЛООТДАЧИ

1. Расчетные коэффициенты теплоотдачи от наружной поверхности покровного слоя в зависимости от вида и температуры изолируемой поверхности, вида расчета толщины тепловой изоляции и применяемого покровного слоя приведены в таблице.

Температура	Изолируемая	Вид расчета	Коэффициент теплоотдачи ${f lpha}_e$, Bt/(м 2 ·°C), при расположении изолируемых
изоли-	поверхность	изоляции	при расположении изолируемых поверхностей

руемой поверхности, °С			тонне покровн коэфф излу	ещениях, елях для ных слоев с оициентом чения С	возду покровн коэфф излуч	крытом ухе, для ых слоев с ициентом чения С
Выше 20	Плоская поверхность, оборудование, вертикальные	По заданной температуре на поверхности покровного слоя	малым 6	<u>высоким</u> 11	<u>малым</u> 6	высоким 11
	трубопроводы	Остальные виды расчетов	7	12	35	35
	Горизонтальные трубопроводы	По заданной температуре на поверхности покровного слоя	6	10	6	10
		Остальные виды	6	11	29	29
19 и ниже	Все виды изолируемых объектов	Предотвращение конденсации влаги из окружающего воздуха на поверхности покровного слоя	5	7	-	-
		Остальные виды расчетов	6	11	29	29

Примечания: 1. Для трубопроводов, прокладываемых в каналах, коэффициент теплоотдачи $\alpha_{s} = 8Bm / (M^{2} \cdot ^{\circ}C)$.

2. К покровным слоям с малым коэффициентом излучения С относятся покрытия с $C \le 2.33$

 2 4) и менее, в том числе из тонколистовой оцинкованной стали, листов из алюминия и алюминиевых сплавов, а также других материалов, окрашенных алюминиевой краской. К покрытиям с высоким коэффициентом излучения относятся покрытия с C > 2,33 BT/(м 2 4), в том числе стеклопластики и прочие материалы на основе синтетических и природных полимеров, асбестоцементные листы, штукатурки, покровные слои, окрашенные различными красками, кроме алюминиевой.

3. Коэффициент теплоотдачи от воздуха в канале к стенке канала допускается принимать равным 8 Вт/ (м 2 ·°C).

ПРИЛОЖЕНИЕ 10 Обязательное

КОЭФФИЦИЕНТ K_1 , УЧИТЫВАЮЩИЙ ИЗМЕНЕНИЕ СТОИМОСТИ ТЕПЛОТЫ И ТЕПЛОИЗОЛЯЦИОННОЙ КОНСТРУКЦИИ В ЗАВИСИМОСТИ ОТ РАЙОНА СТРОИТЕЛЬСТВА И СПОСОБА ПРОКЛАДКИ ТРУБОПРОВОДА (МЕСТА УСТАНОВКИ ОБОРУДОВАНИЯ)

Район строительства Способ прокладки трубопровода и месторасположение оборудования

	на открытом воздухе	в помещении, тоннеле	в непроходном канале	бесканальный
Европейские районы (I.I-I.5, II.I-II.2)	1,0	1,0	1,0	1,0
Урал (VII.I-VII.3)	1,02	1,03	1,03	1,0
Казахстан (XI.I-XI.3)	1,04	1,06	1,04	1,02
Средняя Азия (VI.I-VI.3, XII.I-XII.4)	1,04	1,04	1,02	1,02
Западная Сибирь (VIII.I-VIII.5)	1,03	1,05	1,03	1,02
Восточная Сибирь (IX.I-IX.3)	1,07	1,09	1,07	1,03
Дальний Восток (X.I-X.3)	0,88	0,9	0,8	0,96
Районы Крайнего Севера и приравненные к ним (Ic-Xc)	0,9	0,93	0,85	-

Примечание. Районы строительства приведены в соответствии с письмом Госстроя СССР от 6.09.84 № ИИ 4448-19/5. В скобках указаны территориальные районы и подрайоны по СНиП IV-5-84.

ПРИЛОЖЕНИЕ 11 Рекомендуемое

ТОЛЩИНЫ ИНДУСТРИАЛЬНЫХ (ПОЛНОСБОРНЫХ И КОМПЛЕКТНЫХ) ТЕПЛОИЗОЛЯЦИОННЫХ КОНСТРУКЦИЙ

Толщина основного слоя, мм				
расчетная, по условию	принимаемая	расчетная, по условиям	принимаемая	
подп. 3.1а		подп. 3.1б-3.1и		
40-45	40	до 40	40	
46-65	60	41-60	60	
66-85	80	61-80	80	
86-105	100	81-100	100	
106-125	120	101-120	120	
126-150	140	121-140	140	
151-175	160	141-160	160	
176-200	180	161-180	180	

ПРИЛОЖЕНИЕ 12 Рекомендуемое

ПРЕДЕЛЬНАЯ ТОЛЩИНА ТЕПЛОИЗОЛЯЦИОННЫХ КОНСТРУКЦИЙ ПРИ ПОДЗЕМНОЙ ПРОКЛАДКЕ В ТОННЕЛЯХ И НЕПРОХОДНЫХ КАНАЛАХ

Условный	Способ прокладки трубопроводов		
проход	в тоннеле	в непроходном	

трубопровода,				кан	але
MM	Предельная толщина теплоизоляционной конструкции,				
	мм, при температуре вещества, °С				
	ниже	от минус	от 20 до	до 150	151 и
	минус 30	30 до 19	600 включ.	включ.	выше
15	60	60	60	40	60
25	100	60	80	60	100
40	120	60	80	60	100
50	140	80	100	80	120
65	160	100	140	80	140
80	180	100	160	80	140
100	180	120	160	80	160
125	180	120	160	80	160
150	200	140	160	100	180
200	200	140	180	100	200
250	220	160	180	100	200
300	240	180	200	100	200
350	260	200	200	100	200
400	280	220	220	120	220
450	300	240	220	120	220
500	320	260	220	120	220
600	320	260	240	120	220
700	320	260	240	120	220
800	320	260	240	120	220
900 и более	320	260	260	120	220

Примечания: 1. Толщина изоляции для трубопроводов в каналах указана для положительных температур транспортируемых веществ. Для трубопроводов с отрицательными температурами транспортируемых веществ, прокладываемых в каналах, предельная толщина принимается такой же, как при прокладке в тоннеле.

2. В случае, если по расчету толщина изоляции больше предельной, следует применять более эффективный материал.

ПРИЛОЖЕНИЕ 13 рекомендуемое

ОПРЕДЕЛЕНИЕ ТОЛЩИНЫ И ОБЪЕМА ТЕПЛОИЗОЛЯЦИОННЫХ ИЗДЕЛИЙ ИЗ УПЛОТНЯЮЩИХСЯ МАТЕРИАЛОВ

1. Толщину теплоизоляционного изделия из уплотняющихся материалов до установки на изолируемую поверхность следует определять с учетом коэффициента уплотнения $K_{
m c}$ по формулам:

для цилиндрической поверхности

$$\delta_{l} = \delta K_{c} \frac{d+\delta}{d+2\delta} ;$$
(1)

для плоской поверхности

$$\delta_2 = \delta K_c$$
, (2)

где δ_1, δ_2 - толщина теплоизоляционного изделия до установки на изолируемую поверхность (без уплотнения), м;

расчетная толщина теплоизоляционного слоя с уплотнением, м;

наружный диаметр изолируемого оборудования, трубопроводов, м;

 $K_{\scriptscriptstyle \mathcal{C}}$ - коэффициент уплотнения, принимаемый по таблице настоящего приложения.

Примечание. В случае, если в формуле (1) произведение $K_c \frac{d+\delta}{d+2\delta}$ меньше единицы, оно должно приниматься равным единице.

- 2. При многослойной изоляции толщину изделия до его уплотнения следует определять отдельно для каждого слоя.
- 3. Объем теплоизоляционных изделий из уплотняющихся материалов до уплотнения следует определять по формуле

$$V = V_i K_c \,, \tag{3}$$

где V - объем теплоизоляционного материала или изделия до уплотнения, м 3 ;

 V_i - объем теплоизоляционного материала или изделия с учетом уплотнения, м 3 .

Теплоизоляционные материалы и изделия	Коэффициент
	уплотнения $K_{ m c}$
Изделия минераловатные с гофрированной структурой при укладке на трубопроводы и оборудование условным проходом, мм:	
до 200	1,3
от 200 до 350	1,2
св. 350	1,1
Маты минераловатные прошивные	1,2
Маты из стеклянного штапельного волокна	1,6
Маты из супертонкого стекловолокна, маты БЗМ, холсты из ультрасупертонких и стекломикрокристаллических волокон средней	
плотностью от 19 до 56 кг/м при укладке на трубопроводы и оборудование условным проходом, мм:	
$D_{ m y} <$ 800 при средней плотности 19 кг/м	3,2*
	1,5*
То же при средней плотности 56 кг/м ³	
$D_{ m y}$ \geq 800 при средней плотности 19 кг/м 3	2,0*
То же при средней плотности 56 кг/м ³	1,5*

Плиты минераловатные на синтетическом связующем марки:	
50, 75	1,5
	1,2
125, 175	
Плиты минераловатные на битумном связующем марки:	1,5
75	1,2
100, 150	1,15
Плиты полужесткие стекловолокнистые на синтетическом связующем	1,13
Пенопласт ПВХ-Э	1,2
Пенопласт ППУ-ЭТ	1,3
* Промежуточные значения коэффициента уплотнения сле интерполяцией.	дует определять

интерполяциеи.

Примечание. В отдельных случаях в проектно-сметной документации по тепловой изоляции могут быть предусмотрены другие коэффициенты уплотнения, обусловленные технико-экономическими расчетами и особенностями работы тепловой изоляции.

Текст документа сверен по: официальное издание Госстрой России -М.: ГУП ЦПП, 1998

Госстрой России принял и ввел в действие с 1 марта 1998 года изменение N 1 СНиП 2.04.14-88. Информация об изменении опубликована в БСТ N 6 1998 г.

- 1. ОБЩИЕ ПОЛОЖЕНИЯ
- 2. ТРЕБОВАНИЯ К ТЕПЛОИЗОЛЯЦИОННЫМ КОНСТРУКЦИЯМ, ИЗДЕЛИЯМ И МАТЕРИАЛАМ
- 3. РАСЧЕТ ТЕПЛОВОЙ ИЗОЛЯЦИИ
- 4. ТЕПЛОИЗОЛЯЦИОННЫЕ КОНСТРУКЦИИ

Приложение 1. РАСЧЕТНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ

Приложение 2. РАСЧЕТНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ, ПРИМЕНЯЕМЫХ ДЛЯ ИЗОЛЯЦИИ ТРУБОПРОВОДОВ ПРИ БЕСКАНАЛЬНОЙ ПРОКЛАДКЕ

Приложение 3. МАТЕРИАЛЫ ДЛЯ ПОКРОВНОГО СЛОЯ ТЕПЛОВОЙ ИЗОЛЯЦИИ

Приложение 4. НОРМЫ ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ЧЕРЕЗ ИЗОЛИРОВАННУЮ ПОВЕРХНОСТЬ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ С ПОЛОЖИТЕЛЬНЫМИ ТЕМПЕРАТУРАМИ

Приложение 5. НОРМЫ ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ЧЕРЕЗ ИЗОЛИРОВАННУЮ

ПОВЕРХНОСТЬ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ С ОТРИЦАТЕЛЬНЫМИ ТЕМПЕРАТУРАМИ

Приложение 6. НОРМЫ ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ЧЕРЕЗ ИЗОЛИРОВАННУЮ ПОВЕРХНОСТЬ ПАРОПРОВОДОВ С КОНДЕНСАТОПРОВОДАМИ ПРИ ИХ СОВМЕСТНОЙ ПРОКЛАДКЕ В НЕПРОХОДНЫХ КАНАЛАХ, Вт/м

Приложение 7. НОРМЫ ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ЧЕРЕЗ ИЗОЛИРОВАННУЮ ПОВЕРХНОСТЬ ТРУБОПРОВОДОВ ДВУХТРУБНЫХ ВОДЯНЫХ ТЕПЛОВЫХ СЕТЕЙ ПРИ ПРОКЛАДКЕ В НЕПРОХОДНЫХ КАНАЛАХ

Приложение 8. НОРМЫ ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ЧЕРЕЗ ИЗОЛИРОВАННУЮ ПОВЕРХНОСТЬ ТРУБОПРОВОДОВ ПРИ ДВУХТРУБНОЙ ПОДЗЕМНОЙ БЕСКАНАЛЬНОЙ ПРОКЛАДКЕ ВОДЯНЫХ ТЕПЛОВЫХ СЕТЕЙ

Приложение 9. РАСЧЕТНЫЕ КОЭФФИЦИЕНТЫ ТЕПЛООТДАЧИ

Приложение 10. КОЭФФИЦИЕНТ К1, УЧИТЫВАЮЩИЙ ИЗМЕНЕНИЕ СТОИМОСТИ ТЕПЛОТЫ И ТЕПЛОИЗОЛЯЦИОННОЙ КОНСТРУКЦИИ В ЗАВИСИМОСТИ ОТ РАЙОНА СТРОИТЕЛЬСТВА И СПОСОБА ПРОКЛАДКИ ТРУБОПРОВОДА (МЕСТА УСТАНОВКИ ОБОРУДОВАНИЯ)

Приложение 11. ТОЛЩИНЫ ИНДУСТРИАЛЬНЫХ (ПОЛНОСБОРНЫХ И КОМПЛЕКТНЫХ) ТЕПЛОИЗОЛЯЦИОННЫХ КОНСТРУКЦИЙ

Приложение 12. ПРЕДЕЛЬНЫЕ ТОЛЩИНЫ ТЕПЛОИЗОЛЯЦИОННЫХ КОНСТРУКЦИЙ ПРИ ПОДЗЕМНОЙ ПРОКЛАДКЕ В ТОННЕЛЯХ И НЕПРОХОДНЫХ КАНАЛАХ

Приложение 13. ОПРЕДЕЛЕНИЕ ТОЛЩИНЫ И ОБЪЕМА ТЕПЛОИЗОЛЯЦИОННЫХ ИЗДЕЛИЙ ИЗ УПЛОТНЯЮЩИХСЯ МАТЕРИАЛОВ

СНиП 2.04.14-88* Тепловая изоляция обрудования и трубопроводов (с изменением № 1 от 31 декабря 1997 года)

Постановление Госстроя СССР от 09.08.1988 N 155 СНиП от 09.08.1988 N 2.04.14-88

Госстрой СССР

Действующий

Дата начала действия: 01.01.1990

Опубликован: Официальное издание, Госстрой России - М.: ГУП ЦПП, 1998 год Дата редакции: 31.12.1997 Дата изменения в БД: 26.10.1999 Дата внесения в БД:02.12.1997

СНиП 2.04.14-88 Тепловая изоляция обрудования и трубопроводов (старая редакция) Постановление Госстроя СССР от 09.08.1988 N 155 СНиП от 09.08.1988 N 2.04.14-88

СНиП 2.04.07-86* Тепловые сети Постановление Госстроя СССР от 30.12.1986 N 75 СНиП от 30.12.1986 N 2.04.07-86*

ГОСТ 2697-83 Пергамин кровельный. Технические условия Постановление Госстроя СССР от 31.10.1983 N 294

ГОСТ от 31.10.1983 N 2697-83

ГОСТ 15879-70 Стеклорубероид. Технические условия (С Изменением № 1, ИУС 9-89) Постановление Госстроя СССР от 15.04.1970 N 41 ГОСТ от 15.04.1970 N 15879-70

ГОСТ 10296-79 Изол. Технические условия (с Изм.N 1, утвержденным в декабре 1989 г.) Постановление Госстроя СССР от 29.12.1978 N 271 ГОСТ от 29.12.1978 N 10296-79

ГОСТ 10140-80 Плиты теплоизоляционные из минеральной ваты на битумном связующем. Технические условия Постановление Госстроя СССР от 04.09.1980 N 135 ГОСТ от 04.09.1980 N 10140-80

ГОСТ 15588-86 Плиты пенополистирольные. Технические условия Постановление Госстроя СССР от 17.06.1986 N 80 ГОСТ от 17.06.1986 N 15588-86

ГОСТ 20916-87 Плиты теплоизоляционные из пенопласта на основе резольных фенолоформальдегидных смол. Технические условия Постановление Госстроя СССР от 26.01.1987 N 15 ГОСТ от 26.01.1987 N 20916-87

CH 550-82 Инструкция по проектированию технологических трубопроводов из пластмассовых труб

Постановление Госстроя СССР от 22.04.1982 N 102 CH om 22.04.1982 N 550-82

ГОСТ 20429-84 Фольгоизол. Технические условия (с Изменением № 1, утв.постановлением Госстроя СССР от 29.12.89 № 164)
Постановление Госстроя СССР от 02.08.1984 N 126
ГОСТ от 02.08.1984 N 20429-84

ГОСТ 24748-81 Изделия известково-кремнеземистые теплоизоляционные. Технические условия Постановление Госстроя СССР от 07.05.1981 N 66 ГОСТ от 07.05.1981 N 24748-81

ГОСТ 23208-83 (СТ СЭВ 3476-81) Цилиндры и полуцилиндры теплоизоляционные из минеральной ваты на синтетическом связующем. Технические условия Постановление Госстроя СССР от 25.10.1983 N 289 ГОСТ от 25.10.1983 N 23208-83 СТ СЭВ от 25.10.1983 N 3476-81

Перечень нормативных документов по строительству, действующих на территории Российской Федерации (по состоянию на 01.07.98) Информация, справки от 01.01.1996 N б/н

Об утверждении нормативных правовых актов Системы сертификации продукции и услуг в области пожарной безопасности (Минюст N 1061 09.04.96)
Приказ ГУГПС МВД России от 28.03.1996 N 10

СНиП 2.04.07-86* Тепловые сети Постановление Госстроя СССР от 30.12.1986 N 75 СНиП от 30.12.1986 N 2.04.07-86*

СНиП 2.04.05-91* Отопление, вентиляция и кондиционирование

Постановление Госстроя СССР от 28.11.1991 N б/н СНиП от 28.11.1991 N 2.04.05-91*

СП 41-101-95 Проектирование тепловых узлов СП от 01.07.1996 N 41-101-95

СНиП 2.04.14-88 Тепловая изоляция обрудования и трубопроводов (старая редакция) Постановление Госстроя СССР от 09.08.1988 N 155 СНиП от 09.08.1988 N 2.04.14-88

ПБ 03-108-96 Правила устройства и безопасной эксплуатации технологических трубопроводов Постановление Госгортехнадзора России от 02.03.1995 N 11 ПБ от 02.03.1995 N 03-108-96

Методические рекомендации по метрологическому обеспечению качества выполнения основных видов строительно-монтажных работ Приказ Главгосархстройнадзора от 05.03.1994 N б/н

Перечень нормативных документов по строительству, действующих на территории Российской Федерации (по состоянию на 01.01.98) (старая редакция) Информация, справки от 01.01.1996 N б/н

Строительство и архитектура

Градостроительство, здания и сооружения

Строительные материалы и изделия

Инженерное оборудование зданий и сооружений, внешние сети

Топливно-энергетический комплекс

Нефтепродукты

Строительство магистральных и промысловых нефтегазопроводов

Теплоснабжение, отопление, вентиляция и кондиционирование воздуха (К 41)

Асбестоцементные изделия (К 67)

Отрасли национального хозяйства